
AD-RI72 747 PROCEEDINGS OF THE IDA (INSTITUTE FOR DEFENSE ANALYSES) 1/4
WORKCSHOP ON FORM.. (U) INSTITUTE FOR DEFENSE ANALYSES
ALEXRNDRIR YA N T HAYFIELD ET AL. NOY 85 IDA-N-135

UNCLASSIFIED DECL IDAH@39579 IDA/HQ-85--33579 F/B 9/2 ML

soEmmhhhmmhhls
Emhmmmhmml
EhEmhhmhohmhEI
EI00m0h0h0h0hEI

I4.0 1 2L

LA~

.25 LA4 1.

Copy 45 sf126 copies

AD-A 172 747 /

IDA MEMORANDUM REPORT M-135

PROCEEDINGS OF THE SECOND IDA WORKSHOP ON
FORMAL SPECIFICATION AND VERIFICATION OF Ada*

-~ JULY 23-25, 1985

W. T. Mayfield
S. R. Welke

-SEP 2 4 "gz ':
November 1985

Prepared for

Office of the Under Secretary of Defense for Research and Engineering

-. A --. 0S "."
Cm ~ This docu h " _

INSTITUTE FOR DEFENSE ANALYSES
,._1801 N. Beauregard Street, Alexandria, Virginia 22311

I.

Ada Is a registered trademark of the U.S. Government (Ada Joint Program Office)

86 -IDA Log No. HO 85-30579

DISCLAIMER NOTICE

THIS DOCUMENT IS 'BEST QUALITY
PRACTICABLE. THE COPY FURNISHED
TO DTIC CONTAINED A SIGNIFICANT
NUMBER OF PAGES WHICH DO NOT
REPRODUCE LEGIBLY.

%

SECURITY CLASSIFICATION OF THIS PAGE

REPORT DOCUMENTATION PAGE /-9 .j/Z 7 /
Ia REPORT SECURITY CLASSIFICATION lb. RESTRICTIVE MARKINGS

Unclassified
2a SECURITY CLASSIFICATION AUTHORITY 3 DISTRI3UTION/AVAILABILITY OF REPORT

2b DECLASSIFICATION/DOWNGRADING SCHEDULE Public release; distribution unlimited

*4 PERFORMING ORGANIZATION REPORT NUMBER(S) S MONITORING ORGANIZATION REPORT NUMBER(S)

M-135

.1 6m NAME OF PERFORMING ORGANIZATION 6b OFFICE SYMBOL 7x NAME OF MONITORING ORGANIZATION

Institute for Defense Analyses J C D ___

6c ADDRESS (City, State, and Zip Code) 7b ADDRESS (City, State, and Zip Code)

'.d6 1801 N. Beauregard St.
Alexandria, VA 22305

* a NAME OF FUNDJNGISPONSORJNG Sb OFFICE SYMBOL ~POUEETISRMN DNIIAINNME
RGANZATIN (f aplicale)MDA 903 84 C 0031

Ada Joint Program Office K _ __ _ _

Se ADDRESS (City, State, and Zip Code) 10. SOURCE OF FUNDING NUMBERS

1211 Fern StL, C107 PROGRAMNO IPROJECT ITASK IWORK UN'.Tr
Arlington, VA 2220 ELEMENT NO. O NO. ACCESSION NO.

T-4-26

*11 TITLE (Include Security Classification)
* Proceedings of the Second IDA Workshop on Formal Specification and Verification of Ada, July 23-25, 1985 (U)

1 2 PERSONAL AUTHOR(S)
W.T. Mayfield, S.R. Welke

3m TYPE OF REPORT 13b TIME COVERED 1i4 DATE OF REPORT (Year Moth, D) 5PG OTT
Final FROM _ TO 1___ 195 November 34

16 SUPPLEMENTARY NOTATION

17 COSATI CODES Is SUBJECT TERMS (Continue on reverse it necesary and identify by block number)

FIELDAda, verification, specification, secure systems, semantic, concurrency, computer
sec&uity, softLware, support library, run-time support library

19 ABSTRACT (Continue on revee It necessay and Identify by block number)

The Second Workshop identified current issues in Ada Verification and focused on what is needed to build the foundation of an
Ada Verification Techolopy. IDA workshops will continue to be a meeting place for accessing the current state-of-the-art,
identifying promising research areas, monitoring ongoing verification work, promoting the use of the evolving technology, and
ensuring that valuable outputi from one araare fed into other areas. Tle desired product of these workshops Will be

% recommendations to vanous bodies to coordinate and sponsor certain R&D activities. Working groups on special topics were
also established.

C3 UNCLAssiFiEDJuNLIMrrED 0 SAME AS UPT. C0 IYIC USERS Unclassified
22a NAME OF RESPONSIBLE INDIVIDUAL 22b TELEPHONE (Include Area Code 22c OFFICE SYMBOL

* - DD) FORM 1473, S4 MAR 63 APR edition may be used until exhausted SECURITY CLASSIFICATION OF THIS PAGE

All other editions are obsolete

U%

t.'

ip

IDA MEMORANDUM REPORT M-135

PROCEEDINGS OF THE SECOND IDA WORKSHOP ON
FORMAL SPECIFICATION AND VERIFICATION OF Ada*

JULY 23-25, 1985

W. T. Mayfield
S. R. Welke

gIITII

November 1985

'4

!:72

1IDA :

INSTITUTE FOR DEFENSE ANALYSES

Contract MDA 903 84 C 0031
Task T-4-263

4.: ". .;.. ,.. .,. .. ,,:.' '.% '.. .# . '.,'-.,.'..: ,...e : -.. ,. , - '-.'-:',2 '., ,, ,b 2".2 , -].

I
Foreword

These Proceedings of the Second Workshop on Formal
Specification and Verification of Ada, held at the Institute
for Defense Analyses (IDA), are composed in part of papers
and slides supplied by the speakers, and in part of summaries
of the talks and discussions edited from notes taken during
the Workshop.

The purpose of this second two-day workshop was to
continue discussions on issues raised in the initial work-
shop held in March 1985, to further identify current issues
in Ada verification, and to focus on what is needed to build
the foundations of an Ada Verification Technology.

N,

At the end of the first workshop, several conclusions
were reached. First, there was general agreement that R&D

N. over the past several years has yielded some useful
techniques. Second, the participants determined that these
IDA Workshops would serve as a meeting place where a group of

. experts could assess the current state-of-the-art, identify
* " promising research areas, monitor ongoing verification work,

promote the use of the evolving technology, and ensure that
valuable outputs from one area were fed into other areas.
Lastly, the participants decided that the desired product of
these workshops would be recommendations to various bodies to
coordinate and sponsor certain R&D activities.

- In an attempt to foster results from those attending
these workshops, working groups on special topics were
established. It was envisaged that the groups would prepare

% material for the next workshop and, where appropriate, draft
their recommendations to be forwarded to the relevant
official bodies after discussion at that meeting. Working
groups were formed under the topics shown below.

SECURE SYSTEMS chaired by M. Zuk, MITRE Corporation

NEAR TERM VERIFICATION chaired by J. McHugh, Research
Triangle Institute

FORMAL SEMANTICS AND CONCURRENCY chaired by N. Cohen,
SofTech, Inc.

SPECIFICATION LANGUAGES chaired by F. von Henke,
SRI International

VERIFICATION IN LIFE CYCLES chaired by A. Marmor-Squires,
TRW, Defense Systems Group

"OFFICIAL" CLUSTERS chaired by R. Platek, Odyssey Research
Associates, Inc.

As the time for convening the second workshop drew
closer, it became apparent that the above topics were really
focal areas rather than actual working groups. Interest in
the different groups was so imbalanced that there seemed a
need to combine some of them. At the same time, it became
apparent that the majority of the prospective participants
wanted to attend all sessions rather than being restricted to
one working group. Thus, Clyde Roby as General Chair, in
concert with the working group chairs, revamped the format
for the second workshop to allow plenary sessions for all
presentations and general discussions. By the end of the

.J second workshop, two new interest groups were formed to
replace the old working groups - SECURE SYSTEMS chaired by
Margie Zuk and Richard Platek, and FORMAL SPECIFICATION AND
SEMANTICS chaired by Norm Cohen and Friedrich von Henke.

The workshop was opened Tuesday afternoon by Clyde Roby,
who welcomed all the participants and announced the change in
format from separate working groups to plenary sessions. The
program began with introductory talks given by Paul Cohen of
the Ada Joint Program Office (AJPO), John Faust of the Rome
Air Development Center (RADC), and Col. Joseph Greene of the
DoD Computer Security Center (DODCSC).

Paul Cohen stressed the importance that the AJPO places
on the development of Ada verification technology and
confirmed that the AJPO supports the efforts of this group.

John Faust followed with what he thought should be the
goals of these workshops. These goals included establishing
and nurturing an Ada verification peer review group,
identifying the state-of-the-art of verification,
recommending technical directions for Ada verification, and
coordinating Ada verification with other agencies.

Col. Greene focused on the need for Ada verification to
support computer security, citing the lag in achieving
computer security as compared to communications security. He
indicated that President Reagan's National Security Decision
Directive 145 emphasizes the need for computer security R&D
as part of a national program to improve the security posture
of Automated Information Systems. Col. Greene then discussed

the near-term (5 yrs) and longer-term (15 yrs) goals within
DoD to deploy trusted systems and to achieve interoperability

of systems. Placing Ada and Verification in perspective,
Col. Greene discussed the importance of both to the DoD
program. Ada is important because it is the chosen language
for mission critical software for secure systems.
Verification is important because it will give us additional
assurances as to the trustworthiness of a "trusted" computer
base.

P W

- - - - - - - - - w"% -br ~ 1 - 7. r - - V V w;

The technical program began with Ann Marmor-Squires
presenting the charter of her working group and the key
issues concerning the role of verification in the "Life
Cycle." These issues included defining the life cycle,
determining the cost of performing verification, identifying
the role of automated tools, and establishing how to begin
integrating verification into the life cycle.

Ann was followed by Karl Nyberg. Karl, standing in for
John McHugh, presented the focus of the Near Term working
group. This focus was on the adaptation of existing
languages, tools, and methods to provide for formal
specification and verification of Ada. Issues included the
potential for language changes in 1988, and the need for Ada
formal semantics before Ada verification systems can be
built. There was an additional speaker from this group. Tom
Kraly, of IBM, spoke informally on the "Clean Room" approach,
which is based on the work of Harlan Mills. In this
approach, semi-formal, manual methods are used during the
development process to avoid the introduction of errors from
the beginning.

The next speaker, Friedrich von Henke, discussed the
role of specification languages in verification. He
presented the charter of his working group and highlighted
topics which must be addressed. These topics included how to
specify concurrency and real-time properties, possibilities
for an Ada Specification Language, and the requirements on aV specification language. Norm Cohen completed the Tuesday
afternoon session with a proposal for a "conservative"
implementation of Ada as a way to simplify Ada semantics.

The Wednesday morning session began with David Luckham's
proposal for Ada formal semantics that included the concept
of two semantics; one, an "instrumented" compiler (capable of
explaining what it is doing when queried by a user) and the
other, an axiomatic proof system. This stimulating proposal
evoked a lengthy discussion.

David was followed by Kurt Hansen of Dansk Datamatik
Center who was invited to speak by the Formal Semantics
Working Group. Kurt presented the European project to
develop a formal definition of Ada and provided drafts of
several documents on the project to the workshop
participants. Copies of most of the documents can be found

4 Appendix B. Certain papers were not available for release,
reproduction, and inclusion herein.

The morning session was completed by Norm Cohen, who
presented a notation that is a variation on Dijkstra's
notation and has particular advantages for Ada proof rules.

ii"i

. Margie Zuk kicked off the Wednesday afternoon session by
presenting both the areas of concern and the goals of the
Secure Systems working group. The features of the Ada
Language that create concern about the design of secure
systems include language constructs, run-time support
libraries, and the issue of compiler unpredictability. The v
goals include better delineation of the features of Ada which
introduce security concerns, study of the "conservative"
compiler introduced by Norm Cohen, and determination of the $

language restrictions necessary for secure systems. Margie
invited two additional speakers to discuss Ada Run-time
Support Libraries. Juern Jurgens from Softech and Omar Ahmedfrom Verdix each outlined the key features of their

companies' run-time support libraries.

The final day consisted of summaries by working group
chairs and recommendations for actions to be taken in the

area of formal verification of Ada. These recommendations
included:

a. Developing several formal semantics for Ada

b. Developing a "conservative" compiler and an
"instrumented" compiler

c. Experimenting with specifying programs in ANNA

d. Performing basic research in specifying concurrency,
real-time behavior, and floating point arithmetic

e. Developing "Ada oriented" requirements, designs, and
specification languages

f. Determining restrictions on Ada so that it can be
used for security

g. Studying the security issues of Ada Run-Time Support
Libraries (RSLs)

h. Identifying and tracking ongoing efforts in secure
Ada systems

John McHugh proposed four near-term efforts. These
were:

.4

a. Prototype development

b. Investigation of semi-formal methods -"

c. Identification of Ada-specific verification problems

d. Identification of constraints on run-time support
and code generation

iv

ACKNOWLEDGMENT

The Institute for Defense Analyses would like to thank all the
Working Group Chairs and, in particular, Richard Platek and his staffI at Odyssey Research Associates, Inc., for their assistance in the *preparation of these proceedings.

v.

TABLE OF CONTENTS

Page

Foreward * i

Acknowledgment..................................... Vi

Terms and Abbreviationso.... o............ ix

J I Tuesday Afternoon Session o.................. 1

1.1 Introductory Talks....................................... 1

1.2 Why the DoD Computer Security Center (DODCSC) is
Interested in Ada
-Col. Joseph Greene, DODCSC......................... 2

1.3 Verification and the Software Life Cycle
-Ann Marmor-Squires, TRW o..... 15

1.4 Near Term Solutions to Ada Verification
-Karl Nyberg, Verdix Corp 17

1.4.1 The IBM Clean Room Project
-Tom Kraly, IBM 17

1.5 Ada Specification Languages
-Friedrich von Henke, SRI . .. o..............19

1.6 Simplifying Ada Semantics by Restricting
Implementers' Options

-Norman Cohen, Softech 22

42 Wednesday Morning Session

.1l A Proposal for Ada Formal Semantics
-David Luckham, Stanford o..o... 34

2.2 European Work on Ada Formal Semantics
-Kurt Hansen, Dansk Datamatik Center (DDC) 36

3 Wednesday Afternoon Session

3.1 A Notation for Ada Proof Rules
-Norman Cohen, Softech -...... 55

3.2 Secure Systems Working Group
-Margie Zuk, MITRE 68

3o2.1 The Softech RSL
-Juern Jurgens, Softech ... o.......... 79

Vii

TABLE OF CONTENTS (continued)

3.2.2 The Verdix RSL

-Omar Ahmed, Verdix Corp. 99

4 Thursd'ay Morning Session 121

APPENDIX A: Ada Verification Mailing Information

*APPENDIX B: Documentation from the European Efforts

77-.

e r'- e 1 1% , r

TERMS AND ABBREVIATIONS-o

ACVC Ada Compiler Validation Critieria
AIS Automated Information Systems
AISS Automated Information Systems Security
AJPO Ada Joint Program Office
ANSI American National Standards Institute
ASOS Army Secure Operating System

CCITT Consultative Committee on International Telephone and
Telegraph (Comite Consultatif International Telephonique
et Telegraphique)

CEC Commission of the European Communities
- CM Configuration Management

DAC Discretionary Access Control
DBML Database Manipulation Language

DDC Dansk Datamatik Center
DML Data Manipulation Language
DOC Documentation
DoD Department of Defense
DODCSC DoD Computer Security Center
DTLS Descriptive Top Level Specifications

ESPRIT European Strategic Programme for Research and Development
of Information Technologies

W FD Formal Definition
FTLS Formal top Level Specifications

GKS Graphics Kernel System

IDA Institute for Defense Analyses
I/0 Input/Output

LRM Language Reference Manual (ANSI/MIL-STD-1815A)

MAC Mandatory Access Control
MAP Multi-Annual Programme
MIL-STD Military Standard
MLS Mid-Level Specification

NSDD National Security Decision Directive

OB Orange Book

PC Personal Computer

PDL Program Design Language
PHIGS The Progammer's Hierarhical Interactive Graphics Standards

R&D Research & Development
RADC Rome Air Development Center
RSL Run-Time Support Library

.... . ,+I." ,

.. 4

ix

*A- - -A . *

SDI Strategic Defense Initiative
SETL Set Theoretic Language
SFD Static Frame Descriptor
SIGAda Special Interest Group on Ada (ACM)
SMoLCS Structured Monitored Linear Concurrent Systems

TCB Trusted Computing Base
TDB Trusted Database
TNB Trusted Network Base

VDM Vienna Development Method

xi

4-.

C. °-

'S

*5

.- '

'S

U. ',. -!

1 TUESDAY AFTERNOON SESSION

1.1 Introductory Talks

The Workshop began with several short introductory talks.
0, Clyde Roby of the Institute for Defense Analyses (IDA) opened

the Workshop, and announced that a decision had been made to
change the Workshop's format. Originally, the six working
groups formed at the end of the first workshop were going to
meet in parallel sessions. However, once the working group
chairs got together, they decided to have their groups meet
serially so that everyone could attend every groups's talks.
Mr. Roby also also announced that an account (ADA-INFORMATION,
password Ada) had been created at USC-ECLB to serve as a clearing-
house for Ada-related activities.

Next, Paul Cohen of the Ada Joint Program Office (AJPO)
briefly described the AJPO. The five principal thrusts of the
AJPO are shown below: *

a. Standards

b. Education and Training

c. Validation

* d. Environments

e. Trusted Software and Verification

All of these efforts are heavily sponsored at the AJPO. Mr.
Cohen also mentioned that he is excited to see so much interest
in Ada verification because so little has been done in the area.

The next speaker was John Faust of the Rome Air Development
Center (RADC). He listed several goals of IDA's Ada verification
effort:

a. To establish an Ada verification peer review group

b. To identify the state of the art in Ada verification

c. To recommend technical directions for Ada verification

d. To coordinate Ada verification with other agencies (e.g.,
the AJPO and STARS Program Office)

The IDA effort should highlight computer security concerns, but
should not be limited to security. The effort should also
include the verification of properties other than access
control. Verification of both design ("Al" verification) and
code ("beyond Al" verification) should be addressed.

1.2 Why the DoD Computer Center (DODCSC) is Interested in Ada
- Col. Joseph Greene, DODCSC

Telecommunications security and Automated Information Systems
Security (AISS) are converging. However, the two have different levels Ilk
of maturity. In telecommunications security, we have the new
technology; it is primarily a matter of getting it distributed. AISS L
technology is about 10-15 years behind telecommunications security, so
there is a need for research and development.

This convergence is recognized in the President's National
Security Decision Directive 145 (NSDD-145). In response to NSDD-145,
the DoD has formulated 5- and 14-year goals for AIS. The 15-year goal
is to establish interoperability within the DoD. The 5-year, mid-term
goal is to deploy trustable automated information systems using Common
Ada Program Support Environment (APSE) Interface Sets (CAIS's). To
accomplish the way industry designs and builds word processors, PCs,
minicomputers, mainframes, database management systems, local area
networks and network components, and multimedia systems. There is a 15-
year commitment to create a new technology base and distribute it to
industry.

The DoD Trusted Computer System Evaluation Criteria (CSC-STD-001- "
83; a.k.a. the "Orange Book") defines certain fundamental requirements
for AISS. These requirements include (at various levels of trustedness)
a security policy, accountability (auditing), certain assurance methods,
and requirements for trusted configuration management (CM) and trusted
distribution. The C Division of systems primarily addresses
discretionary access control (DAC). Systems in the C Division are
subject to so-called "Trojan Horse" attacks. Higher divisions (B and A)
address mandatory access control (MAC) which involves controlling access
to data labelled with National Security classifications. In these
higher Divisions, the Trojan Horse threat is countered by more rigorous
assurance methods (including formal verification for A Division) and
rigid configuration control.

There is a trade-off in near-term funding between formal
verification and CM technology. The technology base for formal 4
verification is at present very thin.

Ada comes in because it will be used for mission-critical software 7
in security systems. It is also an avenue to distribute trusted system
technology to the computer industry. The DODCSC supports the following
policy:

a. Use and support Ada standards.

b. Monitor and incorporate emerging standards.

c. Code entirely in machine-independent Ada.

d. Use Ada syntax and semantics to the maximum extent possible for
Descriptive Top Level Specifications (DTLS), Formal Top Level
Specifications (FTLS), and verification methodologies.

2

e. Require designs to be full, compilable and executable Ada.

f. Minimize text in documentation.

g. Validate Ada compilers for all machines used.

Experience has shown that Ada provides significant savings in lines of
code and cost.

The Ada Security Task Force has been merged with the IDA effort.
This Workshop is being used by the DODCSC as a forum to formulate issues
and track resources which can be used to resolve those issues.

The slides for Col. Greene's presentation follow this page.

Ile

.44

'.4

-V

°V

-.

3.4.

z Vw0

w0

L.a.

Z

C) Cri

Lli 9
.* - . . . a

aa
C/)

ccI
z w

LU

I.0 CC

C)4J>

S.n

(nwL O V

(n
a''

S.in

w 0 >5

W5

> I-

5 U
in z CL

Mw
C,/z l

LII

(U))

6 a

*U ..
z 0, ,.:. a . % .

S* - - . S

C.C)

>~ ~
CC1

* w

UUww

00

ww

w 00

ZS w

L)9

00
I-L

.4v

-L- 'K

z
ac

ILL

LuI
0aa

D U

.~&ia a.

O44usu44

S I
w Lu

a
wmh 12 IL t0

cc- Z0M 4

S 96

* *. * *.t *~*,. *.0

-W W. W- WvrW - -Wr '% . -.-

mE

woo 94
ILA

(00

V I~ a 1

('4 00 @B.b

a cc
W cco z WO
w 0 M -I CCu O..F"

5 0 C 0 in() 0! cc

10

0

-.

ILI

- __ __ __ ___cc_ _

IL

a' z z
CM P C

C,)imI
c vi to n ce0 qler

21 Id am*- r

oc)I' '"' 004Z
cc &ii moo V- 0

w 0 V- Cm on IL
C LC c4C c 4 m0 9

cco
.1** w4

w 0'

0 z

oU Ii %wo

I-0

I~IL
t7. L=0oiai o

a1

-V. e 2 w - . -k

zz
00

F-

z C
2 U

Li 0

~~Em 0 .
us A

0~4
s z24

13 I

.0

>

'

i
% ~

WI,

Vol

14a-

'I.*
1%

•

4.

1.3 Verification and the Software Life Cycle
- Ann Marmor-Squires, TRW

Charter of the Working Group on the Role of
Verification in the Life Cycle

a. Determine the appropriate role(s) for specification
and verification technology in the software
development life cycle for Ada mission-critical
systems development.

b. Describe the relationships between verification
technology and other analysis techniques used in
the life cycle.

c. Determine the automated support tools needed for the
successful application of the technology in its
proposed role(s).

d. Recommend means of incorporating verification
technology into the life cycle in an effective manner.

e. Recommend near-term projects to be funded.

f. Coordinate efforts with the other working groups.

Verification should be viewed in a broader sense as one part
of a whole complex of methods, languages and tools used in the
software life cycle. It is important that verification be merged
with other methods to give better confidence in the resulting
system.

The following issues are important to determining the role
of verification in the life cycle:

a. Definition of specification and verification technology.
What exactly do we mean by formal specification and

-P. verification? What languages, methods and tools are
-.. involved?

, b. Relationship of verification to METHODMAN.

c. Is there only one life cycle? What are appropriate
standards for the life cycle(s)?

d. How will verification be used in the specific application?
What properties does one want to verify about the
application? What other analysis techniques will be used in
addition to verification?

e. How much will it cost to do formal verification?

S15

-I•., !~- ,.. .---~s . : .p ''v.%~Y '*P

f. Generic vs. specific methodology and support tools.
Verification will play a different role in the life cycle
depending upon whether the technology being used is specific "-
to the application (e.g., formal information flow tools for
security) or generic (e.g., a verification condition
generator).

g. How do we get started on integrating verification into
the life cycle? What funding is available for near-term
projects?

Configuration management (CM) is particularly important.
Both the verified system and the tools used to verify it evolve. As
the system evolves, it may need to be re-verified. The evolution
of the verification tools must be managed so that new
verification technology can be incorporated without making
re-verification more difficult (e.g., by incorporating a new
verification paradigm which is inapplicable to the
system into the tools).

The question of the use of Ada in the development of the
Strategic Defense Initiative (SDI) was discussed. Some members of
the audience felt that the group present at the Workshop should think
about the implications of using Ada in SDI, while others felt that
the group already has more than enough to think about. No official
decision was made on the matter.

16C

1.4 Near Term Solutions to Ada Verification
- Karl Nyberg, Verdix Corp. I?

The focus of this Working Group is on adapting existing
languages, tools and methods for formal specification and
verification to verifying Ada. Examples of existing technology
include SPECIAL/HDM and Gypsy. There is, however, no fielded
software which has been formally verified. Al systems have been
developed using existing technology, but have not been used
extensively.

One problem with developing near-term Ada verification
systems is that the language may change in 1988. It is not clear
what the extent of this change will be, so any Ada verification
system developed before then may become obsolete due to language
changes. The question is, should we start from scratch in 1988
or build Ada verification systems now and try to adapt in 1988?

Several points were raised in answer to this question.
First, by building verification systems now, we can discover some
of the verification problems connected with Ada. This will also
provide experience with verifying Ada. Even if these early
near-term systems are thrown away after 1988, the experience
gained will be valuable for building future tools. Second,
attempts to build and use systems will help to uncover some of
the "fuzziness" of ANSI/MIL-STD-1815A Ada Language Reference Manual,
(LRM) which will serve as input to the language change in 1988.
Near-term attempts to define a formal semantics for Ada will also
help to uncover "fuzzy" Ada features.

At this point, the question was raised whether a formal
semantics for Ada must be formulated before Ada verification
systems can be built. The general consensus of opinion was that
a formal semantics for at least a part of Ada was necessary, but
a formal semantics covering all of Ada was not. A formal
semantics expressed in terms of axioms and proof rules could be
constructed to cover a restricted subset of Ada. These axioms
and rules could then be used to build a verification system.

1.4.1 The IBM Clean Room Project
- Tom Kraly, IBM

IBM has experimented with applying semi-formal methods
manually (i.e., with no automated tool support) to improve
correctness of software. This project is called the "clean
room, and is based on the work of Dr. Harlan Mills. The "* e
traditional approach to software correctness is to design and
implement the software and then to find the bugs and fix them.
The IBM clean room project is an attempt to use semi-formal
methods during software development so as not to introduce errors

17

--.?

~ *,* *.>r...S b '

in the first place. The project uses a semi-formal specification
language based on set theory. Informal rules of argument are
used to reason about software. Software is modeled as state
machines. m

The clean room project originated in IBM's Federal Systems
Division, but is now used throughout IBM. It has been used with
Program Design Language (PDL) Ada.

9.'%

A

18

1.-5 Ada Specification Languages
Friedrich von Henke, SRI-"

Charter of the Working Group
on Specification Languages for Ada

The purpose of the Working Group is to discuss
Ada-oriented specification languages, with the goal of
formulating requirements for such languages and making
recommendations for further activities in this area.

Specific topics to be addressed include: '

a. The role of specifications and specification
languages in the process of producing Ada
programs

b. The requirements on a specification language (as
opposed to the programming language or design
languages)

c. The state of the art of specifying Ada programs

d. Identification of areas of the Ada language for
which specification techniques are lacking or
insufficient

e. Alternative approaches to the design of
specification languages for Ada

As a result of the discussion, the Working Group will formulate
requirements for Ada-oriented specification languages and make
recommendations for further research and language design efforts.

The activities of the Working Group are to be
coordinated with related Working Groups, in particular
those addressing the issues of formal semantics of Ada
and the role of verification in the software life
cycle.

It is impossible to do formal verification without a formal
specification language in which to state what you are proving.
Therefore, to build an Ada verification system we must have an
Ada specification language which is adequate to state the kinds
of properties we want to prove about Ada programs.

Specifications can be divided into several areas:

a. Functional: The run-time behavior of the program

b. Structural: Static relationships of various modules in a
program

19

v"-'' '
o°

c. Performance: "Hard" real-time properties

d. Security/Safety properties a
An area which must eventually be addressed in an Ada
specification language is how to specify concurrency and
real-time properties. We have little experience in the area of
specifying real-time software. In addition, Ada was designed for
embedded systems so the specification language should also
be able to describe properties of the hardware. This is also an
area in which we have little experience.

The current state-of-the-art Ada specification language is
ANNA. ANNA currently lacks facilities to specify properties
related to concurrency. ANNA is a conservative extension of Ada
in that it attempts to use Ada syntax and philosophy as much as
possible. Is this the right approach? One can imagine three
possibilities:

a. The ANNA approach - make the specification language look as
much like Ada as possible, and don't depart from Ada in any
significant way.

b. Design a completely different language without attempting
to follow Ada. .

c. Middle ground - use Ada syntax and philosophy as guidelines
but not as dogma.

Although ANNA currently falls into the first category, it could
be modified to fall into the third category. The danger in doing
this would be that one would have to modify the semantics while
keeping the same syntax. It would be better to modify both.

An argument in favor of staying as close to Ada as possible
is that this avoids possible incompatibilities between Ada and
its specification language. An argument in favor of not being

bound by Ada is that it may very well turn out that the
properties one wants to prove about a system are not easily
stateable in Ada.

A slightly modified form of ANNA is being used in European work
on Ada. It would be desirable to have a single standard Ada
specification language (e.g., a standard version of ANNA). This
specification would help support reuseability of verified software
since tools which process the standard specification language could
be used on code developed elsewhere.

The term "specification language" is somewhat "fuzzy." It's
not clear how a specification language differs from a design
language (i.e., Ada PDL). It is especially important to make this
distinction clear in Ada. Some people believe that Ada is a
specification language. Ada, or an Ada PDL, may be regarded as a

20 ~ ~ ; .y ~ -. - - ***.*..*o.

design language, but it is not formal enough to be a %

specification language. Specification languages must have a high dr

degree of formality to support proofs. In addition,
specification languages are supposed to say what the program does
rather than how it is done. Using Ada or an Ada PDL might force
the specifier to overspecify the program, and would also make it
difficult to specify at a high level of abstraction. It would be
best if the design language and the specification language were
the same language.

*06.

4..

*. .

IL
°' S.

lp-

21

1.6 Simplifying Ada Semantics by Restricting Implementers'
Options
- Norman Cohen, Softech

Defining a semantics for Ada is difficult because the -

LRM leaves many things unspecified (e.g., parameter-passing
mechanisms, when exceptions are raised, what the effects of certain
pragmas are). Norm Cohen presented a proposal for a partial solution '

to this problem. His proposal introduced the notion of a
conservative implementation of Ada. A conservative implementation
would be an implementation of full Ada, but with many of the .
ambiguities of the LRM resolved in a straightforward way. Another

way to say this is that a conservative implementation is an
implementation which uses a more predictable compiler.

It was suggested that the restrictions that define a
conservative implementation might become part of the language

. definition in 1988 or 1993.

The slides for Mr. Cohen's presentation follow this page.
22.

%"

U'

4I

5.

22 n' l

*5 ' J.
.

, " ° " m '' . . - . " . " o " . " . " . " . " . ' , . ' . ° °t . ° . " o ' . . " . ° °

DO

U)U

a C-

ai,,

0'0 c- 0
u C

Go..u1*

z0 0LD N z
0 4c CD 10

0 0 c O
0_ C.

CL

CD('

crU'). N

23 *4.

bt .-

4., = Go

3 -E

CL. 3 c-

a IV L* LE

0v U0 L.C
00 EU 0I

10 Go

EU Go .- SCf

C U) 0 E
CL0 N ~

.1. C'C7. 1

*C 0 0
IL ft. *40

IVU IA ZOf (%'.

Lu 0Ou 0 4a * C

U) to I- IL EU EUv C. . cC
4z -op .0 4- CC c LKC

LU '0404. EU 10' LL

to u I " U C to C &
-D to.I L 11 *E .- 01w

V 0 ,A ad 01" toU
LL. Go a . L0C. CLU. .0

to 0CA 0 *p CL t- 0
toI U) 0 0 .'

U) EU t Z A. U)
LU OLI CL C- 06

CL 0.. Go~ 0 toA E
m u 0 IL 3 .C

-0. uU' E CL W 0
06L.0 c' IC U 05

xEUo 4- 0 C 4.
C' O 1- 0 .-.- G

SLU6 0 L.' 0C.V

to I u Go V EU oE01
fUU 4C G .0 b (-. P- -C
.0- o E x u u U.

550 Go 0 op6 Go
= -C 0. GoI V

Z' I t o &V G oD t

S Go IV I

CL *- 5. C C U

CD3 C36 306 L) 0

24

4..
ES

V

LLS

C)C

so 0 S &

C. 1* . "0

ZL ES *- - c-I.
0i C. j'

us > 0 a
L) 0- a% E0

0 t

0x a, w -

ES *- 0 XS'

C. ES c.. U S

_0 5 C

a-a
ESz0 .

25 Am

LL..

Lo 0
CAC-

t

c L

* 06

Ii

V Sc

0 06
La. ~ U

C.us

Co 26

0 .

4'0 CL

up

Go u
Eu0 CL of9

3 u .0 C 4O.

09 .6. "0L
u C-uo

0v 0 3p o.

op E' <' 0. 0
u Li L

0' Me . 0 OC X

to u Eu 4.0 I0 ~ .P.

Go. E c
.9.m c Go 4' 0a

Qf .C E Eu.

a a C u 0
0 0 V L 0 0>.

LL 0- 1 0a =0

w E 0 .0 C ..

Eu C-- 106

CM 36c 0-C-

-c 0. a0 Q 3 CL
of L L *-

0u >

00 u 0 I

OC~ CL C.' -L 40
C0 CL .0 060
-W C- 0. o -

Eu~~ 0' I .v ~

0' E0 .9> 41 3. 0

-E. L0u L . 0 L. op
% . E . 0 L CE

CI 4' c %#. 0

~*-4' U .0 0 00

40 0. 0 .0. C . 0

0o 0- c-0 0 Go c- 3c-
c.L C Z :> L 20 ~C

4'0 C~ . .. VI a.027.

4 A,-

0 b t 0 A.

50 C

* CCL

3_g CLC
oU U a* C

V 06 c c

w EU

j*A to N 4w 4'

to .- 0 p-C
_ CS

U) 30 4 CC

z. c 0 &. -I0WO

X: ' 05 L

w- .0 C C'U
-j0 . .4'.- _

4C - c ~)L E

*E C 0 0'1 A

...IL. 0V C .- w

0 C' 'UL S0'U

I-. E 3w S00

Z.- C c 0 c E

OI 0 @. - CL
Z0 c EUOca. 0' 4

a.~ CL E'

ua~~ to*~ 3

C- a CL 0C

.- S 4S x
CW 0W wU (A a

to C o .0 IA0S'
0 Sw' C- S

S a. xC to so
L r C & c - 'u

As~ E' 00W4E~

*0 CS 4b ep5, S '4
at. E Go LU L.L

u. CD 'U L

'US 5' 414 ~28

1 0
ep.

~0 0 0
-h 0.

W4
ce

v C "

0 4w

* E CL'E

4 &

_ L C , to

c 0 c* & - 4 4
>- 0 L 0

a'cr u M.

0 04 C u

opa. id 0. 0 C- 0
L 01 * 4D

3 a 6 0

cm a- 4, .0 0

* op 0 a7 4
L t -4o 43

0 C- Of
"'Ai al &

- "a fe .0 to

c 3 0 at4*c - 40

C X 3- 0.e C .

L C- C 4,

- *- c~ 0~ h .- a'

0h

C-E E

0. 0

29

0 S

0 IL 05

0

F.

S.. &

al 0

u CL

w 0,

CE 0. Ms L

CL L.

CL 0u

<- 0.,

C- 0 0
CO) E

0.0

S. C C-'
C0 0-

4. 4.
CiC 0.

CLS. S. -

0 1-L c 0-.I

c
'a' o

3aW4 0 0m

a. a.:a**..of

a~~~L
go. 0 ~~~*a,*

* ~ o *.L..*. * ' '. ~ . '... '

c

'U 0

c

0 4w

o E

6 -

C-C 2

c Go

CcC

U C

0 L

0 U

IA C S

c C -

0 0 E a

ov CU L
9u c

F- C- 06
U)F 'S. 10 C

o .~ 31

10

a

4416

C%

0

4-. ~.-'.' c-

c C 0
0 xgU

Lo op

C L C-

I- ES ".-
0 ON
L.t

Z 0 c~

C, .0'S--0 2

c- c- to .
3 90u V

LU to C Lb -

.C u 00

-' .- t-0. 0f
w o 3 C

9U ,,*

.. " *..w* - S.

a 0 0. cL* 0

06 C CC04.-~

hi:

C" .I-. 0-,,.

L C 0 =0 E
04 XC 00

*az *- .-
04 06 if6~ ag '. Go-46

4cL Z v L.- 09S

_. 400

0 3 0 t .-
0 0 c 104 410 C '4to

CL L o o o.. 1o0

32 tocco
.4 ~ ~ ~ ~ ~ ~ ~ e Go zo4, .~ . % ' . . . - 44

3,444~~~ *E'~ 4 * f- x *4- 4 4 ~ .* x

C V

100

M to 0

S C

0 C c

c 0 06.

0I c 0 a
0.

10 o-. 0

* C. 0

SC C
L C- U c

* C0 0 a*
0 L. w. w

(fl 0 c'

0 A

C u 4
* 0' 06~

c .c U

-Z* IAAA

2 WEDNESDAY MORNING SESSION

2.1 A Proposal for Ada Formal Semantics
- David Luckham, Stanford U

There are several reasons why one wants to have a formal
semantics for a programming language. First, it provides a
standard definition of the language and how the constructs behave
for both users and implementors of the language. Second, it
provides a basis for reasoning about programs.

There are several approaches to presenting a formal
semantics for a programming language that have been used in the
past:

a. An interpreter for the language in the language. This is
what is done in LISP (page 72 of the LISP 1.5 Manual).

b. An operational definition in terms of abstract machines. An
example is the semantics of PL/I, which was defined in terms
of an abstract tree automaton in the mid 60's.

c. A denotational definition in terms of Scott domains and
recursion equations. This definition was tried for Ada.
This denotational semantics did not include tasking.

d. An axiomatic definition in terms of a collection of axioms
and a set of proof rules for reasoning about programs. This --

definition has been done for Pascal.

These approaches have various shortcomings. Formal semantics are
generally not "debugged" in the sense that they don't correctly
define the behavior of some constructs in some situations.
Formal semantics generally do not cover all of the features of
the language (e.g., concurrency and real arithmetic). Formal
semantics are usually uninformative in that they are hard to read
and it is difficult to determine from the formal semantics how a
given program will behave.

Dr. Luckham's proposal for a formal semantics for Ada is
that there should be two different presentations of the Ada -"

semantics. The first presentation would be a standard
instrumented compiler. This would be a compiler which, in
addition to compiling programs, would also explain what it is
doing in response to users' questions. The second presentation
would be an axiomatic proof system which could be used to provet
programs with respect to specifications in some standard
specification language. Consistency of the two forms of
semantics would eventually need to be demonstrated.
Conceptually, the proof rules should be derivatives of the
semantics of the compiler; in practice, the two would probably be
developed in parallel.

34
1:

- ~. .- '., -. , z%

6'l

It is within the state of the art to build the front end of 16
a standard instrumented compiler. The code generator would
require more work, particularly in the area of tasking. The
standard implemented compiler would not have to be an efficient
compiler; its primary purpose is to provide an executable,
informative presentation of the semantics of Ada.

To do the axiomatic proof system, we need to get more
experience with specifying Ada programs and with proving
properties of concurrent programs. On the basis of this
experience, a preliminary standard specification language could
be defined, and a proof system could be built. The axiomatic
proof system would include specifications of a standard
environment, (e.g., a standard I/0 package). A test of the proof
system would be to see if it could derive the expected behavior
of the programs in the Ada compiler validation test suite.a']

Dr. Luckham's presentation generated a lively discussion with a
number of questions. Some concern was expressed that using an
instrumented compiler to define the semantics of Ada would be
overspecifying the language. One might wish to allow other compilers
which are instrumented differently than the standard compiler but are
nonetheless regarded as Ada compilers. For example, the Ada/Ed
compiler was done in SETL, with the arbitrary implementation choices
documented.

Concern was also expressed about the impact on verification
of underspecifyi'ng the semantics of Ada. This is of particularSconcern in the area of secure systems. Any indeterminacy in the
semantics of Ada should be sufficiently controlled so that
meaningful proofs of security properties are possible.

There was some doubt about being able to demonstrate ,.
consiste-.cy between the two proposed semantics. Consistency

* could be a problem if the semantics were developed independently.
However, if the semantics were developed in parallel, consistency
could be maintained through mapping.

Finally, there was some concern that the semantics might
become so mathematical that only an expert would be able to use
them. The semantics should be written so that the general user
can get sensible answers from sensible questions. Whether or not
an answer is sensible should be determined in your head or by
your peers.

35
zma

2.2 European Work on Ada Formal Semantics
- Kurt Hansen, Dansk Datamatik Center (DDC)

The DDC developed a formal definition (FD) of 1980 Ada in *
1981-82 using the Vienna Development Method (VDM). This definition %

was not as mathematically formal as it could have been--- there is no
formal definition of VDM itself. Nonetheless, a validated compiler **"

was derived from this FD.

Another activity of DDC was the RAISE project. This was a
project to develop Ada support tools, such as interpeters and
verification tools.

Previous work on formal definitions of Ada has used
denotational semantical style. These definitions are not very 2.1
readable, partly due to the fact that a denotational semantics always
specifies a complete model, which essentially forces you to
overspecify). One of the goals of current DDC work is to produce a
more readable style for an FD. Ultimately, DDC would like to be able
to derive a natural language explanation of the FD directly from the

" FD. It is not intended that most people who want to use Ada will
read the FD. Most people will learn about Ada from books written by
people who have read the FD.

Another goal is to provide an unambiguous definition of Ada. The
LRM has many ambiguities which must be resolved in the process of
creating an FD. The approach that DDC has taken is that where there
is an 'obvious way to resolve an ambiguity, it is incorporated into
the FD. When there is no obvious resolution, some resolution is
chosen and an explanation of the ambiguity is included in the FD. The
FD has also been cross-referenced to the LRM.

The technical description of the FD is divided into static
semantics and dynamic semantics. The static semantics deals with the
relationships between program units, whereas the dynamic semantics
deals with execution behavior. A static semantics of Ada is
well-defined. A dynamic semantics includes sequential execution,
parallel execution (concurrency) and I/O, and is much less
well-defined. The process has been to start from the LRM text,
add static semantics and then add the dynamic semantics. The
static semantics consists of denotational-style domain equations
plus some abstract data types. The static semantics defines
whether a program is well-formed and how overloading is resolved.

The dynamic semantics is formed by adding transformation
rules to the static semantics. The dynamic semantics of purely
sequential execution (no concurrency) can be read as an ordinary
denotational semantics. The part of the dynamic semantics
dealing with concurrency is expressed in the SMoLCS (Structured
Monitored Linear Concurrent Systems) methodology. SMoLCS is
based on labelled transition systems. It defines the semantics
of processes in terms of their behavior rather than their state.

36U

The model of a dynamic environment and storage has been done, but
there is currently no certainty that it works in all cases.

The FD project is currently working on formally defining a subset
of Ada to test the expressive power of the tools. This is intended
to evolve to a full ANSI/MIL-STD-1815A Ada specification by the end
of the calendar year 1986. After the full FD is formulated, the next
step is to make a correlation between the FD and the LRM. This
correlation will be important for making the FD readable and
understandable. After the correlation is made, the next aim of the
project will be to create an informal explication of the FD (e.g., a

*textbook).

Other aims of the project include:

a. Building tools to support a machine-readable LRt4

b. Creating educational courses and texts

c. Maintaining liaison with standards groups (e.g. ISO WA9,
Language Maintenance Committee, ANSI)

d. Comparing the Ada FD and the ACVC (are they consistent?)

e. Mapping the FD into a SETL program for testing

SETL might have been adopted as the language in which to express
the FD, but it needs to become more flexible.

Ada is very strongly supported in Europe. The Commission of
the European Communities (CEC) sponsors Ada work through several

.0 projects, including the European Strategic Programme for Research
and Development of Information Technologies (ESPRIT) and the Ada
Multi-Annual Programme (Ada MAP). Research targets for 1985-86
include the relationship of Ada to knowledge bases. One area
which has not been strongly addressed by these projects is proof
systems for verification. A project to prove some properties of
Ada/Ed was considered at one time but was abandoned as too
expensive.

The slides for Mr. Hansen's presentation follow this page.
Additional material can be found in Appendix B.

37
5%.

5 37

"LI

UM.P.)

LL

0

Z Lfl ;

w -Z

1 -

W-

'U38

.

"o5

5-L

/0

* .21
MW2

,... 3 0

CU 0,

4-. CU

, . . . " ., - _ . , .. ', , . , - , , ,,.:- - . :-. ". _ C 0° , . % , ,

co

CL

0 C
CU D7

wC) Co.
E E -

E %W (0 a

0 co

ro Lo

0 C40

C.;

00

EE
o EE

CL al 6.. Li
-0) C D02 E)

<

w 8- ~ E1

0

E

C=

CC
N E

00EE
CL

CL a.,

(v 0 r C
caCLE

DL
CU>E

a, C', C)
C. C/m

..~ - .a,

I.

LL

co.

E
-7-

00

E v
< E

0 E

E C.,

0 0 Q

0 c
E 6-

S.-.

E C-)

>J

a; 0 2

- a . - - a -LAI)

0U

*0

C.) 1C

0

6-J

~0.

C,, 0. C

44C

Sc

00

-~ C

C)

0.:. .. i n
6--

-~ >0

C,,,

>4.

J.O

45

UrU

LLg

40

1w'd

0 6. -

all

j- C

L- . 0 4-0

60 0
0 Mi- C/)

o iw6

cc ~ 2

46 5

-~~-7 U U U-

9.

Cc

Tw

4.-

E I

oo 7
LL)

Ev

EE
<).

4.47

i

'w.

C.,,

m E

0) CLCo -0

E >

4-48

J:.

-

.°

9.
C! (I,

• **d

0 --

"''" E

0. .._

- ..-.''.-,'- ' ."" .-.].,' .,''.'''. 1" ,'-" ,-"." .' ' " .'.'..,/ _-.e .. .: .'.e,..' ;-.;...'...-..,r' C)'¢.
,' ,- -, - ,'; , m' C) '; d ' [; .: " - " " ' , -. • " - -, ,". ,: "•-.,- - -•- - -•'

E* 6

C U L

_ 50

WK, - :1 V

PIS-

.cn

Nr

51,

- a .. - - .. - ~ - -

N

N

tg'
V -a

a

.4N 4.

V f r

a) -aL.

a. I

V

r.
* a..

-'a

'a -~V
0 _____ 1

1, r-*~~ I
N

.~ > CD cj~(0 Z ~-

I LU 00
'a

a- I _________

C, e.

-a

CC)
I a;

* a'

N
4

52 a

- *..*..*, .- -- ~ -- - -
- ~ 'P* ~ a ~ a-i.2~ ~

a)

(00

LCIP w C C

r- NC

C53

* ., . -4.- . *...,~ -. .. ,.--* .- 4 - 4 4

.4

*1

#4

I.
.4..

U

~4~4

C.
44

CL)'

-t

ih~.
"4. cr~ .- ,~\' CL)' -'

-, ' -
-. 4.. - . _ i

.4'
- A.

~LL-1
.4. -'

I '.~Jj 4-,

4-
44 I ____________________
-4.

.44 I. __________________________________
.4

44 I
-Si.1

p
* 44.v~

Ci4.. Cl) Cl)
4 a..~ '.4- '.4- .44

- f
.4. 4%

LL

C V Z
C CCl)

.4 .~ C~ >
~

44- I I I I I

p
4.

4%

4%

54 U

-4 44~4, 4
4*444*44 . 4

C 444 4~4%4** 44*4 4~4~\ .*44444~4 - 4 . 44...

3 WEDNESDAY AFTERNOON SESSION

3.1I A Notation for Ada Proof Rules

- Norman Cohen, Softech

Traditional notations for proof rules (e.g., the notations of

Hoare or Dijkstra) have certain drawbacks that complicate formal
verification. Norm Cohen presented a notation that is a

variation on Dijkstra's notation and has particular advantages

for Ada proof rules. The slides for Mr. Cohen's presentation
follow this page.

55

..f

o °t

. °-

,,

LUU

CLI

V.L

Ic 0 C

(a 0- 0%

0 ca c CD V

0 0i co

* *

C f%.#-

o ES -E~o

* C

-~~ LU

ow N

- ~ U C o

C I3~~c 3A 3A C (0 I*
I CL c cc

S~*0 %w0 o*

W..

ci~

.4x

c'

"4IV

*WC. 4'

57 .* I

--Iw

CCo0
4.' 0

IV.

o0 x
U 0 x.

w*
00

o -Et C- 0
t' 00 .
CLL

1 V 3

4. 0

V 0 0

Go, '. C-

0 3 3
4. c

o -

ci LA0

LAell

ww
Z35

IL 0 0

a-, c C- p- G

0 .

LL 00

vi I L~
%LIP

40 IA 0 I a V

3 - X I #V-
0. £.I u 4.

e 9- uD 0 2 0 0
.o 1 C- 40 c

aL 1 0 0 t
U I c

I 1- o

CL

59 D I ~

CC

CLt

L. U I __

0~ .- 0U

%0 'V C 0

o x~ C- GAoS

U) 0 0 .6

c* 0

u C . CL S -

op 3~ 3 *- 0 0a 0~ O

U, * c *u c-.

u .C

0 C-
C.. 0

0 V 0

.0 0 c~xm

C 0 c.

- C

00 U

lu i*~

a i
I° -• II, C°

., - < ""

4W II.0

0 4. @- -oC- #A t

- <Eo C S CL

- -I .. _ '. . .. ,

L)

0. 0 0.

.4.0 -4. 3% 3

1 -- ..
0 1 0- 1 a V C-

41- C c. 0 0. 0 0

o c <c I a C-C-c
c~ a .L L m m IAL

CL 0u CL CC CL 0C
CL CL 3 1-- 55Ec 1 &0 CL Eu .1 N .

.-. C6 4I 0L cxq

3 C C I X-
3 3, CCC C

L1C 0C 00 0
3 LLe LL L

LT

O 0

o 0 -
C. C-

WLIu u -

C- C Ce

C.) U .

"0o 0 $A.
cC. .

CU -- L* -- C
C- L'A L'

n* C- W- Co4
S tv E 0'0%

=Dg C ' - C "0 ' U
LL -0 *-c 0 .CC

&V. to L oo L L) 0 C..-.
Ze c-C 0 CC0O

0i IVEU to0a C C-
-j ~5 C0 zAC c -C -t

0 04W. 0. .- -

C. 0o *-o 0 W

0 C-~'.L C-'4 ~ oL LLL

G. c c 0---0 -*-- 022. We.0'0 c

w 0 0 .- .-.- I .- L) c -- C u-C.u

**- e.D..-'4 . D.- 4 C 4 C-

c .- a 'a.- 10'0 13 V -- eWC L .0.0 C
*-010 CCC caC C C4 'A '

t- 0 0 Uu u u u uu -6 0~ zoz
'A0 %A C.C. aL aa 0 LC

.9 C - f- C. CL0C00 ow.0.a. 0 060 CL C C
0 C0.C. c.3 (L3 0. 3 C0.33

44 -*ew *SS4 0.0.0 0.0.0

o' to 333 &3 33 333LcxcxC
40 Go 33 . *- C- 3 .- 3 .. 3 3

3 m.

N tI

* CL
*03

a C

% is
C, "0

I-~~ c..0

Li. CL CL
UCC

C. CC C L4

1 0 %0 0 0
C CC S .C

w 0.4 C . 4f

9-4 $A 4 C'd

5b x a u LL

C. -L CA. LA. U
2 %0. %0I~a .0.v

46. '5D LL r% 1

-W

cf 00.0
.0 0% CCL Gou

* 0 LL- 3 0a a
SA op *. a a -# LL LL.
Lb E LLa -11 1

_~~ LL S x .. L
6. '0

5.L L)af

C6

.1% a -A

-

coo
.0

us C L t-

LL U CL 0') C

ED Q0 00 .
C -

LL ' ~ .. ~L
lz

CV_
0n 0_

CD 00

'P. ~~'i 0 .

ot
.0 0'

a. - -; CA-
C.) 3 L. 1') - 4

Of IV U

$A -0'"'

0.-

LiC) 0b Lou

U I U.A I

c! 0(0. m 0. I" *A-

0 06 0
CL %C . 0 .3CfLC.

a.L
a.3

a..4

a.7

L)L c- * .

U4

--- c c
_ C. 00

a... 0 0

-Li. - 0 0

CD .402

Cu u

4 - C. c. m
I.0 00

~~.~ IL0 C C-

0 - 0W
x% X

C .0 .0 .0

I%0. - 4-0U

LA.I
LL. oa V-

Li. W" -r
0 I.. 20-4

wN

C 0-

3N

0. CL U.

65. 3- e

I..

CI)
GD

C .C-
10 LL

44

L C- C-0- -
.- CL %4 C'

IL C-L0

_C & 0 &-
1-*. 4 4

0i 0L C_ a- 0.
Ic .0 00 .0

IL C C4I N~ C. 0- 0

C - CL
I0. C L. 0 IL f- "0

As0 x 1- E~

Z 0 - L 0 40.. P.-W_ M 4L CL. . . 0

Q. CC P-0 M

p.II~ ' LL IL IL CC
~% C-CL0 0 to

m. op IS0 to('
C- at (L (L CL

0 4. 4e 0.C

*6.C- C(4 (4 C4 400 V L L .L IL
%I- do -% P- u.Co M 0.4 CL C OI
4 4 0 x 'C. C CIV. 0 0

4. U6 -L -.cL

C-CS0 0

66

N.,* %I,*

- - -. - & -3

44

c4 CC

0 C

0-o 0
u wC c .. I

cU c 0 c-
CLc 0 C-

o 0 IV 0) Cu
cici C w w

C.)C I & 1

w~ 0

00 P- p- r- C-CV

0 C--c 0 .

S- __ __ 0 ' w 0 <E

C __ w

LL. LcL 0C1

LL LL C.. C-

0 0 aLL I0 4'a

4' CU-U C P-U.

U.L. Go .O LL C

0LLC 4 L LL. LA. LL. L.'

<r LL 0.. LLC

LL LLL LL

67

3.2 Secure Systems Working Group
- Margie Zuk, MITRE

Purpose: To study the impact of Ada on the design and i
implementation of secure systems.

Up to now, language issues have not had a big impact on
secure system design. Ada, however, has many features that
previous languages have not. As has been discussed earlier in
the conference, there are many uncertainties about the
additional features and how they will affect security design.
These features fall into three categories:

a. Language constructs - what are the security issues
connected with Ada constructs such as tasks and
exceptions?

b. Run-time Support Library (RSL) - the Ada Run-time Support
Library is like a small operating system itself. How
should the run-time support library for a secure system in
Ada be designed?

c. Compiler Issues - how can we be sure that the
unpredictabilities in the definition of Ada do not
undermine the security of the system?

All of these questions need to be addressed before Ada can be
used with confidence in secure designs.

Although there are complications introduced by using Ada
for secure systems, there are also benefits. The Ada features
to support software engineering (e.g., packaging, separate
compilation units) make it more probable that Ada code will be
correct. Other languages have no support for software
engineering. In addition, the fact that Ada is a high level
language with features like strong typing makes it superior to
unstructured, untyped languages like assembly language.

The security community is interested in "zero-term"
solutions, i.e., what can we do with the technology that is
available today? Ms. Zuk's suggestion was to restrict the use
of Ada constructs in order to enhance the understandability and
verifiability of programs (e.g., the "conservative" compiler
approach presented by Nora Cohen). The slides for Ms. Zuk's
presentation are follow this page.

lop 5,°

.4"

68o

I

- -. - - - -

i .4,

'4-

a-
0

i
I-

0z

0

C,, -A

Ew
I.-
C,,

C,,

w

0w
C,,,

-a..

- U

U

V

P

AM

1 - L1

a-iuq

U..

0
LLi.

LLJp.
o

70

0 pip

1Iuv

0 wj

CC

>71

-w

aLa
I--.

DP-B

UU

z c

EUU

4*i

rn

low

.1lie

I72

- S = .-.-. -- 71 77 -

Val.

-Iow

K.: U)ImL .)

- 73

LM e.

*0 Ci

0 0 0

h. 0.0 0.M0

(U

74,

I *1I

10!, w. Ii

.. ma.

5,. _75

C:)

z CD z
-- z w

ULLJ .

o0 U
=U

*L zwm
4 Z) WW W

- ~ LL 40 0. JL

ZL -4 ui1 U MJ
0 DC.. 4jV .

LU LU WI-4 < r I (n

(n) L1 40.l)

0 CWW Z--. U
WJ LUW EJ 0 Wzz m

z-0 O .

1-4~ = LU in
j P- I--LU

-J WZ P- C m (
00

0

4 76U

IL
Mom5

CC,

zLL C.) I-

-~~ IE4 C.) Li

z WV

w 0

LL Cw P-Z 0)c

LL WLLI >
UmL - 0((n

W 001-

p. m - i-
a-iLL. LL 00z

(nO Um

LI.77

ZoCI,

LL
zr-

0o j
z 3-4

W. 0 CD
C.) -N

rE i-CD

C,, 0 78

WJ p

As part of the secure systems talk, representatives from Softech
and Verdix gave talks on specific Ada RSL's.

3.2.1 The Softech RSL
- Juern Jurgens, Softech

The Softech RSL runs on top of UNIX BSD 4.1 and its sole
responsibility is to handle signals. In an architecture like the
Nebula architecture (MIL-STD-1862B Nebula Instruction Set
Architecture, 03 January 1983), the Softech RSL allows some Ada
features to be implemented directly in hardware (e.g., task switching
is supported directly by the Nebula hardware). However, the
Collection pragma is not implemented in the component of the RSL that
does storage management. The slides for Mr. Jurgens' presentation
follow this page.

4..

Vt

79.

.4

4. S*.. . 4

"4 *,4 4J~~Ak AW\

S

I~-.

4~.

4..'

.4-.

Ip I.E.
9

a.
0~

w
4.

U-
U-
1~ 4z

N.

I~.

d

V...

LS.,

S.L

-JL

=., Cl LU

'.5J C.J

LU. ~ ac

CLU

* 3c,

* LU U

(.0 0 0U C

-j-

oj le LL L
x~~~ 8 n(.

-L U,
Q - I-

r14 LU to X

h 00

CL L - .. L

* U- - .J c U Loj (Mj I- C ~ (a.

(.j w LLI

~~~~C - jULU (0 )
LU N1 LU LU Z iL

*j 0- - ui-

0N (..) w - I

.. 0 0 0

WSA- I-



a ~
- - .

LU LU

(A (

CA (A

LUui

x 0
CCA x

I-I
' z

?-i zi

a. 0

uI
9-..

E <
* I .-

LLA
OW (AU 1

a Q -

' " u , C.
0 "U <:

.-

• • 0

". ' ' .- ,- .-' - .,+, . .. _' ' '" " " '" _. .- - - . -.- ... .. -.. . -. • .. . . . - -. . . . . . . .. _ . .



AD-AI?2 74? PROCEEDINGS OF THE IDA (INSTITUTE FOR DEFENSE ANALYSES) 2/4
HORKSHOP ON FORN.. (0) INSTITUTE FOR DEFENSE ANALYSES
ALEXANDRIA VA N T HAYFIELD ET AL. NOY 05 IDR-N-135

UNCLSSIFIED DECL I AH3 79 I /N - B--35?9 F/9/2 NL

mhmmhhhhhmmhl
mhmmhhmmmhhl

Ihhhhhl!KhhME



Zf 1.5 11111 .4



- . . ~ A. . -CL

UAU

< I.. < c

< zL
* 0

84V



LEJ,

LI

L'I-

La.II

LALU

LLUI

CL LIi

=u
LU LU

u.S >LI

0c

-. Cn~ 85



U. 8-6

X be

LLJ -j m

lOLl i=U

I---
C* Co

I IccJ O~

a 00

LDL

= C 86



WV

LLLI

L&J 0

LaL

P/rn 0 LA

LUJ

2. I-- 2 C

w 2C
2C 0 0 2.'

U-- CL -

0 I-

LU ZJ

CW

LL.-

(j ~ ~ ~ q 7' fl

'I LIS 

.



LUU

*L LL. .

Uj

U- km

cc 0i L ;

( J <-
ui- LU L

a z

('-II

0 amL
* I--

-J.



4.-

#15 ____ ___<

LL

z I

* LU ILS

of Ir



ama
2cp

.4J I-.

V.c

LC,,

LAJ 1= W

uJL
J I j LL

ZL LU L

LU I- >L
*r LU

2c LU w
-a I

LL0

LU wJ

VP LU

C,, 90



7.7.

I.J1

2c

LII-

0-
06: le (

I- LI
A I-.

4-, % 4
Cw U 0

ogo
4.J am

0-4

2c 2 0 I- 2
oi C-)fl

w -L I- Z -~ LL5-dCf
LLJIdfW -- w -. W4-Cd,< < U (D Z-4- W U00 *Jm = j_ -<Ie

Id 4- 4 )L L

0Cl, LLJO

0 5- ~ -LLJ

LA 4- I -L J LJ
Lo.

LU 4) 5--) 4) .. Z I



LU < )

(A5

<0LU ZIa LU 
-

z =
LU L

z LU I-

z z <- 0:
0 0 <Z

0.

o LUi

<0 zZ. 0 u

00

LUC (A 0U U 1
< U.Z

z~L

~ L U U L9Z L



LU2%

Cz

LU x
CA.

0 0 z 91



-7 p. . YT -t-1u7 -r

LUU

X 4c

CL .4

Q0,4

>-2cx

-4.J

LL LLJ
o2cj

=i 0 (D

U- kil = w
w1 -- ,- wJ/ w cU

- - - P '. $--a

ou I-- LL

W U (D- 0<3 -
LU0--1u w uiNw L" w

(NLm -rLAO W &J*. w Lm LU UJ

(.OC.D -
Z ~ - ~ D L DCfl Cf

94 L



I ~LU

"4 -J .4
LU LUO

U x((a0

CL 0.

LU WU X

x x
LUw 0

LWW LU

L LULUU

LL U. 4

LU -L

LUU (A-4a z
U oI

- LUa.

LU o Ujo

LU Cf.

U.

''4,________________LU

<00
> cc4:

;7. 0

U 4

<A

LU AU
0leL



LLU

ada

a-

LaI

Ic ic

- LUJ

CL ~ (.j 2

4-0 wL

0D 8

a- U- ~ ui
cn 0 i-

0 L..

u .i .. (

-U

U- U-I

I- W 0.



DATA STRUCTURES FOR EXCEPTION PROPAGATION

Activation Static Frame
Records Descriptors (SFO's)

Procedure SF0 Pointer * xc6to

* ___ ____ ____ ___ Block r
*Code Handier Address

Dynamic Unk

0

Enclosing SF0 Pointer

Hendler Table

Enclosing SF0 Pointer

p

Exception
Dyne Hanider Table

for
Procedu re p

97



E F s - -'%,4w

aqa

CCL

,c 0n 4c -

X C= 2 0

cnn le

LL J

Z n LLJ LLJ $oi

I-c



- I~'2.- .- 7 LL2-V Iqx L ~ ~W W2W WUW W.WV W.L I% W.-T-, I' V. ~- I%- ~ , N .- IL %7 7- - 1

3.2.2 The Verdix RSL
- Omar Ahmed, Verdix Corp.

The security issues for an Ada RSL include both
inter-program and inter-task security. The interaction between
two different Ada programs of different security levels running
on the same machine is an issue that is external to Ada. The
concerns are the same as they would be for two programs written

in any languages. 4

Interactions between two Ada tasks of different security
levels that are part of the same Ada program is much more
Ada-specific. Inter-task security may require some kind of
"level" pragma to indicate the security levels of the various
tasks within a single program. Such a pragma would direct the
compiler to check for certain kinds of interactions (i.e.,
rendezvous between a SECRET task and a TOP SECRET task or shared
memory between two tasks of different levels). These checks
could probably be done at compile time.

Supporting such pragmas would, however, effectively change
the language, since such pragmas would forbid certain
interactions that would otherwise be legal. A program might
compile successfully without the pragmas but not with them. It
is more manageable to adopt the convention that a single Ada "2
program runs at a single level, with all tasks within it at the
same level.

One approach to limiting interactions between Ada programs at a
single level is the Rushby separation kernel approach. In this
approach, programs of different levels are isolated from each other
in separate domains, and can only communicate through the separation
kernel. The separation kernel only allows very strictly controlled
imter-program communication. The separation kernel approach could be
regarded as a zero-term solution to inter-program security.

The Ada LRM says nothing about inter-program communication.
Inter-program communication could be added in the RSL (e.g., a
"mailbox" facility). Programs could also share memory. As
further functionality (e.g., shared memory, file systems) is added to
the RSL, more complicated security mechanisms have to be built
into the RSL, and verification becomes more complicated.
Verifying the security-relevant portion of an RSL is a near term
goal which is boundable.

The slides for Mr. Ahmed's presentation follow this page.

99° %'

99")



U

a
.4

qm

~.. .~

Ci')

0S "oe~
p

v-I

S~J~i
.44

w -

1 a.

'S. -- I.

V

~EE4

-

*1~i

U...

100

U,



I
V

'I'

C
U, -4)

4)

C,,
4)

t

'.4

4)

S
oil

6~~

4)

p.

4)~4)~

0 00

V

f

d.
liii

"I..

% ~ .~



I' . S

.4,".

* I -.

I..'

',%,



------- - - - - - -

II t--

- - - - - - -

LUJ

* 103



- --- - - - . - -. -~ . .. .- - - .- I~7w

-4
V

U
0
0 .4

-I

4'..

.1k.

4~~,

.4

.4.

.4.

4.'

.4 -~ 3.. aaJ
.9 ~wJL

~ U
H
~ U

4..4
4

0)~

.4

.4' hail4'
4. p4 m .4-

.4 0
.4

0 0 0 6 S
*

4 44*

.4
'-I.

.4

.4

.4

4'.

04 U
4

-i .
* . . -.. - . . ~ **A*-~a*4*

4.4 4*.f!.~. 4 4 . - . .. 4..4-.....4..-...- 4 ~*-~-. .4.
4 .~ %.4*** ~4~<%~ . 4.

- . 4 . * ~ -



00 C

t- 4)

44b

5~105

% .,t-



o

0e

4) (

.1106



- -~. - -.. . . . n a S - - - - - -

"p

sb.. -'

b

F.

* - A

S S.

**5

".5.

.~5

"5
4.

I-,

10 /

C~.



- - c -r--w .-- C. V .vwTWWW'WrUfl'~J WV! 4 7 r 4  .r;r.~r. W. -~ ~ ~ . -

a

.4.

4-

EJ

U bO -.

4.

* Cl)

Cl)
V

U

-- 4

44

4.

- -S

4,

4'

4, 4.

.4.

44

-p
4.

4 1

U

4'..



-V.NiI-l~

to'

00

*bO

r,*0
Q~b

109



- . - - -' -. - - -- ~ - 4 ~ ~

4'.

4.

.4'

a
W4

~'1
~'.
4.

9..
9.

4.

h...

- 4,

- *4,

4.. .2
C.) C.)

a)*

4 14.4 0
-. 0

a)
~ 0

* 0~ 0

0~ p

0 * .~j.

a)
'*

A,

2

110

p
44

S.

*4
9.*4W*~4

**j...:



-51 T- TIV I-. M . -T . 5,-1

ab

14A

it to

S..,

' iP9 
- "S

IpU. 
S.

ii,~ 64.

0
4.?sb

'~IL



'S'

C-3"

c: t

0 .

'iso

'9 I

a11



46

'.4

p bo

a11



. -

"11
'v,



bOOR

pgi

Jelk

P~115



0 1..

4 -a

On

-4

Co I116



D~ ( W.%W I - W.~ w - - T~ l -p . . . . . . .F

C'i

F:

as°s

i-;-)

riu Cf

,.

* U.

i" , -.

.. . . . . . .. .. .. . , . . . . . - . . . . . .. ..

-"- ''.."U .. 1.,1-7%..-'.".; '.'-' ,--',, *'' .," -,'' ''' '1. . ' -' ,"-;' ',.-."''-, "- -,, ,., ,"-";



Por

:PP9

11

CI,

11u U :I C.:

• , • . • •



papsfW

94,C

GOi 0 I

'C.4

4.4
rn,

0 119



.p..

J

.4.).0
U

4

'p

p L2 WA

0

-. 4,
_ I.-

~ a
U U

U
~h)bO~ a

8
-wS

~

0 ~ I I I
.4..) ~ I I I I

* U N
0 0 0 -

A'

120

U.

~ . U.



+.4
7

4 THURSDAY MORNING SESSION

The Thursday morning session consisted of summaries by the
Working Group Chairs of the workshop activities relevant to

their working groups, and recommendations for actions to be taken

in the area of formal verification of Ada.

Richard Platek announced that an attempt was being made to

create a SIGAda Committee for Formal Methods, and that 90 minutes had
been reserved at the next SIGAda meeting in Minneapolis, Minnesota,
for the Working Group Chairs to report on the Workshop. The hope was
expressed that this committee would not be isolated from other SIGAda
committees.

Much of the Workshop was devoted to the issue of a formal
semantics for Ada. The Europeans have done much more in this

area than has been done in the United States. Several proposals
for work in the area of Ada semantics were put forth, including:

a. Identify and standardize a set of restrictions defining a

"conservative" implementation of Ada that would simplify the
szmantics.

b. Develop multiple formal definitions of Ada aimed at
"' .facilitating proofs.

c. Develop a standard instrumented compiler to answer
programmers' and implementers' questions.

If several different formal semantics are developed, there
should be some way of reconciling them or demonstrating their

. consistency. Decisions like what form to present the semantics
in and whether it should be a semantics for full Ada or only a
restricted subset should be made on the basis of attempts to

actually create a semantics, rather than on a priori judgement

about what is feasible.

Some concern was expressed about whether it was appropriate

to propose standards (e.g., a standard instrumented compiler,
a standard formal definition) at this time. There was a general

consensus that there is a need for a standard formal semantics
and a standard mechanism for reasoning about programs; it was
felt that these two items were not the same thing, and should be
distinguished. There was also a general consensus that pursuing

" ** David Luckham's proposal for a standard instrumented compiler
would be useful.

Friedrich von Henke presented the following recommendations

* for work in Ada specification languages:

a. Experiments with specifying programs in ANNA should be
carried out and the experience evaluated, with the goal of

121

, ...



eventually arriving at a generally accepted specification
language at the code/package level.

b. Languages for specifying concurrency, real time behavior
and floating point arithmetic should be explored. Much
basic research is needed here.

c. Development of Ada-oriented requirements, design and
specification languages should be further explored. ANNA is
a language for design and code specification.
Design/specification languages for Ada should integrate
advanced concepts, and should be based on a formal semantics
of Ada.

The point was made that decisions about languages, in particular
what constitutes an "Ada-oriented" design/specification language,
must be based on experience. It was suggested that if the
design/specification language is too divergent from the Ada
philosophy, it will be impractical to use.

Margie Zuk presented the following recommendations for work
in secure systems in Ada:

a. Delineate the features of Ada that introduce new security
concerns (i.e., concerns that are specific to Ada).

b. Investigate the "conservative" compiler approach for
security. What impact would optimization pragmas have on
assurance that a system is secure? p

c. Determine what restrictions should be placed on the use of
Ada for secure systems design and implementation. This
would include formulating a rationale for any specific
restriction.

d. Study the security and verification issues related to the
Ada RSL.

e. Identify and track ongoing efforts in secure Ada systems
(e.g., the Army Secure Operating System (ASOS)). -.

John McHugh presented the following recommendations for work
in near term Ada verification systems (0-4 years):

a. Develop prototype verification systems built around
existing specification languages; experiment with the
prototypes by applying them to real problems.

b. Investigate the use of semi-formal methods, e.g., the IBM
Clean Room project.

c. Consider Ada-specific verification problems, both in the .**

abstract and from the point of view of existing systems
(e.g., what problems would crop up if SCOMP were redone in

122 U

'"2' . ' ' . . .-' , .



W;VIWWF,

Ada). The latter will help to produce a really useable
subset of Ada.

d. Consider constraints on RSL's and code generation to enhancep confidence in verification.

tooa

12

. . . . .



4%

-, APEAXA

9-

.

.. 4

I 4._

L APPNDIX



i%
APPENDIX A

Ada Verification Mailing Information

Since verification impacts not only coding activities but
,1, all development activities, it is desirable that many groups

continue to be informed about the progress of these workshops.
Therefore, the account ADA-VERIFY has been created on USC-ECLB
and will be used as a central repository for Ada Verification
announcements, files, etc. The list shown below has also been
established on USC-ECLB to encourage the exchange of ideas:

Ada-VERIFICATION-LIST

- Messages that are sent to this list will be received by all of
the individual electronic addresses that are included in the
Mailing Directory.

The Mailing Directory is provided as the remainder of
Appendix A. It is a directory of workshop participants and other
interested parties along with their postal, telephonic, and
electronic addresses.

S

P NOTE: The AJPO is planning to move all ECLB accounts to ISI.
Addresses will be (name) @Ada-20 as of 22 November

Z4 1985.

lk Those persons who attended the 2nd Workshop are noted in the
Mailing Directory with an asterisk.

A.1

'

-I " - "< < . . ' .M . . . . . , -,'- . ". ", : , -. ". . . ••".- '.." .



71 -2% -N X

Mailing Directory

U

Bernard Abrams ABRAMS@USC-ECLB

Grumman Aerospace Corporation
Mail Station 001-31T
Bethpage, NY 11714
(516) 575-9487

Omar Ahmed
Verdix Corporation
7655 Old Springhouse Road
McLean, VA 22102
(703) 448-1980

Eric R. Anderson TRWRB!TRWSPP!ERA@BERKELEY
TRW DSG (R2/1134)
One Space Park
Redondo Beach, CA 90278
(213) 535-5776

Dr. Thomas C. Antognini SECURITY!TCA@MITRE-BEDFORD or
MITRE Corporation TCVB@MITRE-BEDFORD
Mailstop B330
Burlington Road
Bedford, MA 01730
(617) 271-7294

Charles Applebaum CHA@MITRE-BEDFORD
1058 Boyurgogne
Bowling Green, OH 43402
(419) 352-0777

Krzystof Apt
Thomas J. Watson Research Center
P. 0. Box 218
88-KOI Route 134
Yorktown Heights, NY 10598
(914) 945-2923

Terry Arnold MERDAN@ISI
Merdan Group
P.O. Box 17098
San Diego, CA 92117

Ted Baker
Department of Computer Science
Florida State University
Tallahassee, FL 32306
(904) 644-2296

A.2 .

C..- - . " - ---- - - ," "v .. '. .. '.,. '..' '-. 'j.'..- .- '- ' .. ' .. '



David Elliot Bell DBELL@MIT-MULTICS
Trusted Information Systems, Inc.
3060 Washington Road
Glenwood, MD 21738
(301) 854-5889

Dan Berry
3531G Boelter Hall
Computer Science Department
School of Eng. and Appl. Science
Los Angeles, CA 90024
(213) 825-2971

Edward K. Blum BLUM@ECLB
Mathematics Department
University of Southern California
Los Angelos, CA 90089
(213) 743-2504

Alton L. Brintzenhoff SCI-ADA@USC-ISI
SYSCON Corporation
3990 Sherman Street
San Diego, CA 92110
(619) 296-0085

* Dr. Dianne Britton HELBIG@ISI
RCA Adv. Tech. Labs
ATL Building
Moorestown Corporate Center
Moorestown, NJ 08057
(609) 866-6654 or (609) 924-3253

4

* Dr. R. Leonard Brown BROWN@AEROSPACE

The Aerospace Corporation
P. 0. Box 92957
Los Angeles, CA 90009
(213) 615-4335

,.4

Richard Chan RCHAN@USC-ECL (bad)
. Hughes Aircraft Co.

P.O. Box 33
FU-618/P115
Fullerton, CA 92634
(714) 732-7659

Norman Cohen NCOHEN@ECLB

SofTech, Inc.
705 Masons Mill Business Park .
1800 Byberry Road
Huntingdon Valley, PA 19006
(215) 947-8880

A.3
4*4,

' ¢ ' ' '' ' , : : ' : " ""'," f:,-:5 ,': . ." " " ,~g.,%' , f:; f.: ,- : ,,u'. - , : :,: '-".'-



Paul M. Cohen PCOHEN@ECLB

Ada Joint Program Office
OUSDRE/R&AT
Pentagon Room 3D139 (Fern Street)
Washington, DC 20301-3081
(202) 694-0211

Richard M. Cohen COHEN@UTEXAS-20
Institute for Computing Science
2100 Main Bldg.
University of Texas
Austin, Texas 78712
(512) 471-1901

Michael D. Colgate FREEMAN@FORD-COS1
Ford Aerospace & Comm. Corp.
10440 State Highway 83
Colorado Springs, Colorado 80908

Mark R. Cornwell CORNWELL@NRL-CSS
Code 7590
Naval Research Lab
Washington, D.C. 20375
(202) 767-3365

Major Terry Courtwright COURT@MITRE
WIS/JPMO/ADT
7726 Old Springhouse Road
Washington, DC 20330-6600
(202) 285-5056

* Dan Craigen CMP.CRAIGEN@UTEXAS-20
c/o I. P. Sharp Associates
265 Carling Avenue
Suite 600
Ottawa, Ontario, Canada KIS 2E1
(613) 236-9942

Steve Crocker, M-101 CROCKER@AEROSPACE
The Aerospace Corporation
P.O. Box 92957
Los Angeles, CA 92957
(213) 648-6991

John J. Daly WCOXTON@USADHQ2
USAISSAA
2461 Eisenhower Avenue
Alexandria, VA 22331-0700

A.4

-% -% ~ * * • .%. - . ...



Tom Dee
Boeing Commercial Airplane Co.
P. 0. Box 3707
MS 77-21
Seattle, WA 98124
(206) 237-0194

Jeff Facemire FACEMIRE%TI-EG@CSNET-RELAY
Texas InstrumentsP.O. Box 801
MIS 8007
2501 West University"-
McKinney, TX 75069-,
(214) 952-2137 €

.9

John C. Faust FAUST@RADC-MULTICS
RADC/COTC
Griffiss AFB, NY 13441
(315) 330-3241

Gerry Fisher
fa IBM Research 35-162

P. 0. Box 218
Yorktown Heights, NY 10598
(914) 945-1677

Roy S. Freedman FREEDMAN@ECLB
Hazeltine Corporation
Greenlawn, NY 11740
(516) 261-7000 r-i

James W. Freeman
Ford Aerospace & Comm. Corp.
Mailstop 15A
10440 State Highway 83
Colorado Springs, CO 80908
(303) 594-1536

Mark Gerhardt MSG@MITRE-BEDFORD
MITRE CorporationBurlington Road

'- Bedford, MA 01730
(617) 271-7839

Chuck Gerson
Boeing Aerospace Co.
Mailstop 8H-56
P.O. Box 3999
Seattle, WA 98124

A.5

'-' . ' ' '" " -""V ." ''- ' ' "-""." -''" " ".'"-' -" "- '- " " '-"" ""'' " 
J

"" " "' "' " ' '" "" "" "" "" ." 
- ' ' ' "

-"- -' -"



Helen Gill
MITRE
Mailstop W459
1820 Dolly Madison Boulevard
McLean, Virginia 22102
(703) 883-7980

Kathleen A. Gilroy
Software Prod. Solutions, Inc.
P. 0. Box 361697
Melbourne, FL 32936

Virgil Gligor
Department of Electrical Engineering
University of Maryland
College Park, Maryland 20742
(301) 454-8846

Donald I. Good GOOD@UTEXAS-20
2100 Main Building
The University of Texas at Austin
Austin, TX 78712
(512) 471-1901

Ronald A. Gove GOVE@MIT-MULTICS
Booz, Allen & Hamilton
4330 East West Highway
Bethesda, MD 20814
(301) 951-4624

Inara Gravitis GRAVITIS@ECLB
SAIC
1710 Goodridge Drive
McLean, VA 22202
(703) 734-4096 or (202) 697-3749

Col. Joseph S. Greene, Jr. JGREENE@USC-ISI
DoD Computer Security Center
9800 Savage Road
Fort Meade, MD 20755-6000
(301) 859-6818

David Gries GRIES@CORNELL
Dept. of Computer Science
Cornell University
Ithaca, NY 14853
(607) 256-4052

A.6 6'



*-a
177 Tsy sr

David Guaspari RPLATEK@ECLB "
Odyssey Research Associates
408 East State Street
Ithaca, NY 14850
(607) 277-2020

* J. Daniel Halpern SYTEK@SRI-UNIX or
SYTEK Corp. MENLO70!SYTEK!DAN@BERKELEY
1225 Charleston Road
Mountain View, CA 94043
(415) 966-7300

* Kurt W. Hansen KHANSEN@ECLB
Dansk Datamatik Center
LuudToftevej IC
DK2800 Lyngby
Denmark
PHONE: ++ 45 2 872622

* Scott Hansohn HANSOHN@HI-MULTICS
Honeywell Secure Comp. Tech. Center
Suite 130
2855 Anthony Lane South
St. Anthony, MN 55418
(612) 379-6434

* Larry Hatch HATCH@TYCHO
DoD Computer Security Center
9800 Savage Road
Fort Meade, MD 20755-6000

". (301) 859-6790

Linn Hatch
IBM
17100 Frederick Heights
Gaithersburg, MD 20879

* Brian E. Holland BRIAN@TYCHO

DoDCSC, C3
9800 Savage Road
Fort Meade, MD 20755-6000
(301) 859-6968

Ray Hookway HOOKWAY%CASE@CSNET-RELAY
Dept. of Computer Eng. & Science
Case Institute of Technology --

Case Western Reserve University
Cleveland, OH 44106

'y. (216) 368-2800

A.7
A 4

a,'

,' ..." -% , -,- -.. ,, ,, , . .. . . '. , ., . . .., ". ,',',... .. . './.-' ..,.. ,'''a,



iU

Paul Hubbard HOOKWAY%CASE@CSNET-RELAY
Dept. of Computer Eng. & Science
Case Institute of Technology
Case Western Reserve University
Cleveland, OH 44106
(216) 368-2800

Jim Huitema
National Security Agency
R831
Ft. Meade, MD 20755
(301) 859-6921

Larry A. Johnson LJOHNSON@MIT-MULTICS
GTE
77 "A" Street
Needham, MA 02194
(617) 449-2000 ext. 3248

Juern Juergens JJURGENS@ECLB
SofTech, Inc.
460 Totten Pond Road
Waltham, MA 02254
(617) 890-6900 ext. 316

Matt Kaufmann CMP.BARC@UTEXAS-20
Burroughs Corp.
Austin Research Center
12201 Technology Blvd.
Austin, TX 78727 '

(512) 258-2495

Prof. Richard A. Kemmerer DICK@UCLA-CS
Computer Science Department op
University of California
Santa Barbara, CA 93106
(805) 961-4232

John C. Knight UVACS!JCK@SEISMO
Department of Computer Science
Thornton Hall
University of Virginia
Charlottesville, VA 22903
(804) 924-1030

Major Al Kopp AKOPP@ECLB
Ada Joint Program Office
OUSDRE/R&AT
Pentagon Room 3D139 (Fern Street)
Washington, DC 20301-3081
(202) 694-0211

A.8

U

. ,. .- ft *,* * .. * . -. :-* -. . -. % . . ft ft ft* . - -' ft ". t tftfftft*ft % t , f %,.*,* * ,-* . . * . . .*,% % %,, . -



* Thomas M. Kraly

IBM Federal Systems Division
Software Eng. & Tech. 4D08
6600 Rockledge Drive
Bethesda, MD 20817
(301) 493-1449

Dr. Jack Kramer KRAMER@ECLB
Institute for Defense Analyses
Computer & Software Eng. Div.
Alexandria, VA 22311
(703) 845-2263

Eduardo Krell
3804 Boelter Hall
UCLA
Los Angeles, CA 90024

Kathy Kucheravy
DoD Computer Security Center
9800 Savage Road
Ft. Meade, MD 20755

Dr. Kenneth Kung KKUNG@USC-ECLA
Hughes Aircraft Company
Ground Systems Group
M. S. 618/Q315
P. 0. Box 3310
Fullerton, CA 92634
(714) 732-0262

Carl Landwehr LANDWEHR@NRL-CSS
Code 7593
Naval Research Laboratory
Washington, DC 20375-5000
(202) 767-3381

Mike Lake MLAKE@ECLB

Institute for Defense Analyses
Computer & Software Eng. Div.
1801 N. Beauregard Division
Alexandria, VA 22311
(703) 845-2519

Randall E. Leonard
Army Sys. Software Support Command
ATTN: ASB-QAA
Fort Belvoir, VA 22060

A.9r



Nancy Leveson
ICS Department
University of California
Irvine, CA 92717
(714) 548-7525 or (714) 856-5517

Dr. Timothy E. Lindquist LINDQUIS%ASU.CSNET@CSNET-RELAY
Computer Science Department
Arizona State University
Tempe, AZ 85287
(602) 965-2783

Steven Litvintchouk SDL@MITRE-BEDFORD
Mail Stop A180T
MITRE Corporation
Burlington Road
Bedford, MA 01730
(617) 271-7753

David Luckham LUCKHAM@SAIL
Stanford University d
Computer Systems Lab, ERL 456
Stanford, CA 94305
(415) 497-1242

Dr. Glenn MacEwen
Computing and Information Science
Goodwin Hall
Queens University
Kingston, Ontario
K7L 3N6
(613) 547-2915 or (613) 548-4355

Ann Marmor-Squires MARMOR@ISI
TRW
Defense Systems Group
2751 Prosperity Avenue
Fairfax, VA 22031
(703) 876-8170

Eric Marshall PAYTON@BBNG
System Development Corporation
P.O. Box 517
Paoli, PA 19301
(215) 648-7223

Adrian R. D. Mathias RPLATEK@ECLB
Odyssey Research Associates
408 East State Street
Ithaca, NY 14850
(607) 277-2020

A. 10

m

.- ,, .-." '-. .' -'.' -., " . -



Terry Mayfield TMAYFIELD@ECLB
Institute for Defense Analyses
Computer & Software Division
1801 N. Beauregard Street
Alexandria, VA 22311
(703) 845-2479

John McHugh MCHUGH@UTEXAS-20
Research Triangle Institute
Box 12194
Research Triangle Park, NC 27709
(919) 541-7327

Rudolf W. Meijer RMEIJER@USC-ECLB
Commission of the European Communities
Info. Tech. and Telecomm. Task Force
A25 9/6A
Rue de la Loi 200
B-1049 Brussels, Belgium
PHONE: +32 2 235 7769

Donn Milton VRDXHQ!DRM1@SEISMO
Verdix Corporation
7655 Old Springhouse Road
McLean, VA 22102
(703) 448-1980

Warren Monroe WMONROE@ECLA
Hughes Aircraft Co.
P.O. Box 3310
FU-618/Q315
Fullerton, CA 92634
(714) 732-2887

Mark Moriconi MORICONI@SRI-CSL
SRI International

*. Computer Science Laboratory
* 333 Ravenswood Avenue

Menlo Park, CA 94025
(415) 859-5364

LCDR Philip A. Myers MYERS@NRL-CSR
Space and Naval Warfare Sys. Command
SPAWAR 8141A
Washington, DC 20363-5001
(202) 692-8484

*Karl Nyberg NYBERG@ECLB

Verdix Corporation
7655 Old Springhouse Road
McLean, VA 22102
(703) 448-1980

A..11

, , " ""% . " '.-' : '-'-"- ,f - % .".. % ° .".. .-' ..,"-. -%- " . .-". .: " " . ".. -..-".. - o-" .; - - .- .%. "-" * -V. .



* Myron Obaranec LAKSHMI@CECOM-1
U. S. Army, CECOM
Fort Monmouth, NJ 07703
ATTN: AMSEL-TCS-SIO
(201) 544-4962

Frank J. Oles
Thomas J. Watson Research Center
P.O. Box 218
88-KOl Route 134
Yorktown Heights, NY 10598
(914) 945-2012

Mahmoud Parsian
SDI Inc.
P. 0. Box 4283
Falls Church, VA 22044

Diana B. Parton DBP@MITRE-BEDFORD
The MITRE Corporation
Burlington Road
Bedford, MA 01730
(617) 271-7754

Don Peters
Comm. Sec. Establishment
Dept. of Nat. Defence
101 Colonel By Drive
Ottawa KIA OK2 CANADA
(613) 998-4519

John Peterson PETERSON@TYCHO
DoD Computer Security Center
9800 Savage Road
Ft. Meade, MD 20755
(301) 859-6790

Joseph E. Pfauntsch, MS 29A JEP@FORD-COS4
Ford Aerospace & Comm. Corp.
10440 State Highway 83
Colorado Springs, Colorado 80908
(303) 594-1326

Richard Platek RPLATEK@ECLB
Odyssey Research Associates
408 East State Street
Ithaca, NY 14850
(607) 277-2020

A.12

.7



Erhard Ploedereder PLOEDEREDER@TARTAN
Tartan Labs

411 Melwood Avenue
Pittsburgh, PA 15213
(412) 621-2210

David Preston DPRESTON@ECLB
IITRI
5100 Forbes Blvd.
Lanham, MD 20706
(301) 459-3711

Sri Rajeev IHNP4!ATTUNIX!RAJEEV@BERKELEY
AT&T Bell Laboratories
Room 1-342
190 River Road
Summit, NJ 07901
(201) 522-6330

William D. Ricker WDR@MITRE-BEDFORD
The MITRE Corporation
M/S K229
Burlington Road
Bedford, MA 01730
(617) 271-3001

R. Max Robinson RROBINSON@USC-ECLB

Institute for Defense Analyses
Computer & Software Eng. Div.
Alexandria, VA 22311
(703) 845-2097

W. A. Robison
30 Charles Street West
Apt. # 1811
Toronto, Ontario, CANADA
M4Y IR5
(416) 925-0751

Clyde G. Roby CROBY@ECLB
Institute for Defense Analyses
Computer & Software Eng. Div.
Alexandria, VA 22311
(703) 845-2541

Ken Rowe
DoD Computer Security Center
9800 Savage Road
Ft. Meade, MD 20755

A.13

a-,



John Rushby - EL393 RUSHBY@SRI-CSL
Computer Science Laboratory
SRI International
333 Ravenswood Avenue
Menlo Park, CA 94025
(415) 859-5456

Mark Saaltink SAALTINK@MIT-MULTICS
I. P. Sharp Associates
265 Carling Avenue
Suite 600
Ottawa, Ontario, Canada KIS 2E1
(613) 236-9942

Marvin Schaefer SCHAEFER@USC-ISI
DoD Computer Security Center
9800 Savage Road
Fort Meade, MD 20755-6000
(301) 859-6880 or (301) 859-6818

Mike Schwartz UCBVAX!HPLABS!HAO!DENELCOR!
Mailstop L0402 ALUVAX!MMADVAX!SCHWARTZ@BERKELEY
Martin-Marietta
Denver Aerospace
P. 0. Box 179
Denver, CO 80201
(303) 977-0421

Dev Sen
STC IDEC LIMITED
Technology Division
Six Hills House
London Road
Stevenage
Hertfordshire S61 1YB ENGLAND
PHONE: 011-44-438-726161

Jerry Shelton VRDXHQ!JHS@SEISMO
Verdix Corporation
7655 Old Springhouse Road
McLean, VA 22102
(703) 448-1980

Brian Siritzky (212) 460-7239 SIRITZKY@NYU-ACF2 or
Dept. of Computer Science ... CMCL2!ACF2!SIRITZKY
Courant Institue of Math. Sciences
New York University -.,
251 Mercer Street
New York, NY 10012

A. 14

2"



* Roger Smeaton SMEATON@NOSC-TECR
NOSC, Code 423
San Diego, CA 92152
(619) 225-2083

Michael Smith MKSMITH@UTEXAS
ICSCA
2100 Main Building
University of Texas
Austin, TX 78712
(512) 471-1901

Ryan Stansifer RPLATEK@ECLB
Odyssey Research Associates
408 East State Street
Ithaca, NY 14850
(607) 277-2020

, David Sutherland RPLATEK@ECLB
Odyssey Research Associates
408 East State Street
Ithaca, NY 14850
(607) 277-2020

Steve Sutkowski INCO@USC-ISID
Ino Inc.
8260 Greensboro Drive
McLean, VA 22102
(703) 883-4933

Michael Thompson
Astronautics Corporation of America
P. 0. Box 523
Milwaukee, Wisconsin 53201-0523
(414) 447-8200

Friedrich von Henke VONHENKE@SRI-CSL
SRI International
Computer Science Laboratory
333 Ravenswood Avenue
Menlo Park, CA 94025
(415) 859-2560

Barry Watson WATSON@ECLB
Ada Information Clearinghouse
IITRI
Room 3D139 (1211 Fern St., C-107)
The Pentagon
Washington, DC 20301
(703) 685-1477

A. 14A
;" ,'.

I %

. . o ° . o . . . . . . . . .. . . ° . . . . . . . .



Doug Weber RPLATEK@ECLB
Odyssey Research Associates
408 East State Street
Ithaca, NY 14850
(607) 277-2020

St eve Welke SWELKE@ECLB

Institute for Defense Analyses
Computer & Software Eng. Div.
1801 N. Beauregard Street
Alexandria, VA 22311
(703) 845-2393

Col. William Whitaker WWHITAKER@ECLB
WIS/JPMO/ADT
7726 Old Springhouse Road
Washington, DC 20330-6600
(202) 285-5065

* Jim Williams JGW@MITRE-BEDFORD
MITRE Corporation
Mailstop B332
Burlington Road
Bedford, MA 01730
(617) 271-2647

Jim Wolfe JWOLFE@ECLB
Institute for Defense Analyses
Computer & Software Eng. Div.
1801 N. Beauregard Street
Alexandria, VA 22311
(703) 845-2109

Larry Yelowitz KLY@FORD-WDL 1
Ford Aerospace and Comm. Corp.
Western Development Lab. Div.
Mailstop X-20
3939 Fabian Way
Palo Alto, CA 94303
(415) 852-4198

* Christine Youngblut CYOUNGBLUT@ECLB .o- -.

Advanced Software Methods, Inc.
17021 Sioux Lane
Gaithersburg, MD 20878
(301) 948-1989

A. 15

°°'° '°°''.% ° ../, .. . ",'- Oo" j.-.o° o°,'Oj j. . ° .' J o . ° ' . o % .j~o- . --. •" o'% oj - •j -.'j j o°-~ j -'.7 °'



r 79" W TM~r5

*Margie Zuk MMZ@MITRE -BEDFORD
Mailstop B321, Bldg B
MITRE Corporation
Burlington Road
Bedford, MA 01730
(617) 271-7590

A. 16



APPENDIX B

Documentation from the European Efforts

The papers found in this Appendix were provided by the
Dansk Datamatik Center (DDC). Since Kurt Hansen of DDC was
unable to bring sufficient copies for all attendees, the Dansk
Datamatik Center has allowed IDA to reproduce and include these
documents as part of the Proceedings.

I.S.

B-1a

*OP

S. %

dd
°

.:...

b .

B-i



NOTES

lft

1Y,

B-3.

q7.



* .

NOTES

U

p.1.
JI.~

I.

I.
$1 -
I. *.U

~.. g~

~

I.

K..
. CI

~
I* I.

B-4 a

7
... * .. I-~ 1 I.



The Draft Formal Definition of Ada®
Commission of the European Communities: Multi-Annual Programme

Technical Annex

14 December, 1984, version 2 ..

1.0~V -.-. N



77 1-2

Table of Contents

Table of Contents:

1. Project Title ..... . . . . . ... s... o...... o 1-3

2.Project Summary . .. .o . ...... o ... o..... .oo . .. 1-4

3Objectives .... ..... .......... .. o.o...1-6

4. Aims and Objectives with respect to the Mul-
tiannual Programme ........... . oo. ...... o 1-7

So Current State of the Art ... o...o ...... 1-14

6. Project description ..... o..o.....o.o 1-18

6.1 Overview-... . ............... o .... . 1-17

6.2 Work Packages and their Interrelation ... o 1-17

6.3 Management Issues ................ .o..... 1-41

7. Financial Statements ................ ... 1-52

So8 Project Team.......... .. .. .. .. .. . .. o .. . ........ 1-59

Z-



- '6 -

1-3

Project Title

1. Project Title

The title of this project shall be: N
"THE DRAFT FORMAL DEFINITION OF ANSI/MIL-STD 1815A Ada"

-- hereafter referred to as the "Ada FD". ,

PR o i

p..

p..

B--

.

B-8 ~...,.

p-. .,*
"v'-" "-"- ', "- ." "-"'-"' '- '-" "' '-" " 

" "
"-'" " ""',""-""-'.-" " "" "' " ""'-'"-' -" -" : "' "' "" "" ". ". .".'-" " , ." .'"."."".'."'"'. ",7'.



TO F7 -- Y

Oraft

maDefinitionPr ec
of Ada Project Sunnary

2. Project Summary

The project aims at developing the draft Ada language formal
definition, the Ada FD.

The task will be completed using state-of-the-art techniques
in formal specification methods. Different specification ap-
proaches will be carefully studied, and the most promising

Work methods will be chosen.
Pack-
ages: The project is foreseen to progress as follows:

D - A "difficult" subset of Ada will be selected, -

C - a set of combinable specification techniques adequate
for the definition of full Ada will be tentatively
selected, and

E - a trial definition will be developed.

F - The trial definition will be evaluated, and on this
basis

IJ - a full scale draft Ada formal definition (the Ada FD)
KL will be developed.

P - In parallel, annotations of the Ada FD will be devel-
oped.

R - Extensive cross referencing to the Ada standard docu-
ment (ANSI/MIL-STD 1815A) will be developed.

V - The work on the Ada FD, it's annotation, and correlation
to existing reference manuals will be reviewed on a

" regular basis.

NO - Tools for manipulating the Ada FD will be developed.

Q - mappings from the proposed Ada FD to the NYU SETL
interpreter for Ada, will be documented, as will

S - a study of the feasibility of automated verification
of the ACVC test suite with respect to the Ada FD.

X - Finally Educational Issues will be addressed.

%,13-9 -



1-5

dd Objectives

It must be emphasized that the completed Ada FD will defineIt1the Ada language as found in ANSI/MIL-STD 1815A (Revision
January 1983). Whereever this latter might be inconsistent,
incomplete or ambiguous, the produced Ada FD will leave the
subject undefined.vi



1-6
Form'a
Definiton
of Ada Objectives

3. ObjectivesO

The main objectives of this project are:

- To obtain as concise a definition of the full ANSI Ada
language as is today feasible, in a form which

(0) may serve as a reference for questions on Ada,

and is suitable for further research on the following
topics:

(1) formal work in the areas of proof systems for Ada
programs,

(2) correct development of correct Ada interpreters and
compilers,

(3) the meaningful generation and verification of Ada w
test programs, incl. validation of the ACVC test
suite, and

(4) the derivation of informal, but precise, unambiguous

Ada reference manuals for various user groups,

in order to help provide:

(5) input to the ongoing standardization work on Ada, in
particular to support the ISO future review of the
Ada standard, and

(6) a worthy, broad, and commonly accepted candidate for
the formal definition component of a future Ada ISO
Standard.

And to further the propagation of Ada, as well as teach-
ing professionals how to read, understand and use an Ada
FD in their present position.

Subsidiary objectives are:

- To help unite various approaches to the informal, and
semi-formal descriptions of Ada (by studying, how to
relate the proposed Ada FD to e.g. the NYU SETL inter-
preter for Ada)

- To further develop and research engineering methods
suitable for the precise definition of large, complex
software systems (by calling on a wide community of
computer scientists to take part both in the actual Ada
FD development, and its review), and thereby

- To further propagate the use of formal methods in soft-
ware engineering.

* B-Il



Aims and Objectives with Respect to the
Multiannual Programme

4. Aims and Objectives with Respect to the Multiannual
Programme -

The following is quoted from TF-TIT/2472/84-EN rev. 3, start
pg.36:

"3. Formal Definition of Ada

3.1. Background

Work on a Formal Definition (FD) of Ada is of prime im-
portance for the rigour and stability of the Ada Standard.
Eventually, a completely formal description could be the
prime form of any programming language standard, with a
narrative definition and validation test suite as comple-
ments. However, even though the main mathematical forma-
lisms to cover the important aspects are probably avai -

lable, combining them effectively and applying them to
the concrete case of a language as comprehensive as Ada
is a matter which still needs development. Part of this
work will be for tools that help to make the description
more tractable, and hence more usable for a number of
purposes: not only as a candidate for the ultimate lan-
guage standard, but also as a basis for derivation of
correct compilers, and for reasoning about properties of
Ada programs. Another aspect is that of making the de-
scription executable, so that it would be used to process
the Ada validation test suite, and Ada programs in general.

Work on a FD of Ada cannot proceed in isolation: it needs
to recognize first of all the existiang standardization
effort and their revision cycle. The work of ISO TC97/
SCS/WG 14 "Ada" has just begun (first meeting 10-11 April
1984). At the first meeting it was confirmed that the
basis for the initial ISO standard shall be the Ada Refe-
rence Manual, and that a formal description is not consi-
dered at the stage. In fact a separate working group ISO
TC97/SCS/WG 16 "Guidelines for the development of standards
within SC5" may at some stage address the usage of a for-

" mal description for standardization of programming langua-
ges. Thus any FD project should at least establish liaison
with WG 14 and WG 16. Other standards liaison, e.g. with
ANSI and ECMA, may also be useful.

There is a possibility that the US will fund some work
on the same subject. In that case a collaboration could
be envisaged, most likely in the form of independently
funded, but complementary projects, which have a large
measure of mutual cognizance.

*B-12

..--~ -. n -- I,



- , I-8 B
Formal1-Defin t on

of Ada Aims and objectives with Respect to the
Multiannual Programme

3.2 Guidelines for the Formal Definition Project(s)

The following guidelines will apply to any project pro-
posal under this heading. They are for a large part based
on the advice given by the Ada-Europe working group on
Formal Semantics of Ada, which has held intensive discus-
sions on this subject over the past one and a half years."

The above quoted section is in close harmony with what the
proposers of this project believe.

In order to show that the project complies with the aims and
objectives of the multiannual programme, we have numbered and
quoted the EEC requirements below -- together with our plans
on how to fulfill them.

1. "All proposals shall contain details explaining on what
basis and to what extent the approach(es) put forward can
be considered "formal"."

Definitions can be expressed in various styles:

Systematic: The gross outlines of a 'formal' specifi-
cation method is followed -- using some
informally explained specification langu-
age(s),

Rigorous: and certain, or all relevant, but not
necessarily all aspects of, properties
of this language and of the constructed
specification are 'formally' expressed,

3
- Formal: and 'formally' verified or defined.

In the previous three paragraphs the word 'formal' has been
used in the sense it is used in mathematical logic.

It is here tentatively being proposed to split the Ada FD
into basically three parts:

- Static Semantics: dealing with all the statically
decidable properties that any Ada program must sa-
tisfy, and which a compiler is specified to check.

- Dynamic Sequential Semantics: dealing with the run-

time, action, or execution semantics of all but the
tasking aspects of Ada.

- Dynamic Parallel Semantics: dealing almost exclusively
with the time-dependent, and tasking aspects of Ada.

B1. -. . .



~pv. '-9
Aims and Objectives with Respect to the VMultiannual Programme

This split has been chosen for pragmatic reasons, and is
motivated below.

It is further being tentatively proposed to define:

- deterministic aspects of Ada denotationally,

- non-deterministic, but not concurrent, aspects of Ada
axiomatically/algebraically, and

- concurrent aspects of Ada, i.e. Ada tasking, struc-
tural operationally.

In addition we may find it desirable to express certain
absolute, or relative, partially ordered, time-dependent
features of Ada using temporal, or interval logic.

For the denotational semantics we propose to choose, as our
departure point for a fully, formally definable specification
language, that of VDMs META-IV, but with additions and re-
strictions, henceforth referred to as ML4.

In the static semantics a simple, applicative subset of ML4
will be proposed, and the definition will be a standard,
denotational semantics (non-exit, non-continuation style)
model. Thus the static semantics model will be fully formal.

For the greater parts of the dynamic sequential semantics an
imperative version of ML4, using the so-called exit mechanism,
will be proposed, and the definition will be a denotational
model which can be fully, denotationally, i.e. formally
explained. We propose to "decorate" the applicative ML4 with
imperative-looking combinators like statements, sequencing,
and exit constructs, in order to render the definition more
readable. It should be noted that the "imperative" combinators
are but a well-disciplined precursor to the "abstract semantic
algebras" of e.g. Peter Mosses. In this sense our dynamic
semantics definition of Ada is fully formal.

The storage model of Ada: values, locations .(pointers), al-
location, assignment, and contents-taking, will be proposed
expressed in a style reminiscent of the CLEAR or ASL algebraic
semantics specification language. Other, minor parts of
"sequential" Ada may likewise be, and in cases, alternatively,
rather than only exclusively, algebraically defined. To the
extent, these metalanguages are formal and combineable this
definition will be formal.

The definition of Ada tasking is here being proposed to be
defined using the SMoLCS derivative of structural operational
semantics.

B-14



I-10
i Oranorma Aims and Objectives with Respect to the

Definition
o Ada Multiannual Programme

Since SMoLCS can be expressed in an algebraic style, using
ASL, it turns out that the definition of Ada tasking can be
made technically similar to the algebraic style mentioned U
above.

It will finally be attempted to give the combination of the4-5 specification parts a formal explanation. This may be

done either "absolutely" (ideally): with respect to the
underlying specification languages, or "relatively": with
respect to the actual, resulting Ada FD. To the extent that
this can be expressed formally, the whole Ada FD is formal.
To the extent it cannot be properly formalized, the Ada FD is
only rigorous. We believe that it is feasible to express the
"relative" meaning of combining the specification parts.

2. "Review procedures shall be incorporated in that workplan
as an integral part of the effort, in order to promote
acceptance of the results; the problem of liaison to the
User Community shall be addressed."

A document: "The R81e of the Ada FD" will be proposed. It
will define the uses and user groups of the Ada FD. On the
basis of such an approved document a suitably large list of
representative users from each of the groups, and from Europe
and the US, will be established. The user groups will review
the ongoing work in two forms; write-in reviews in response
to broadcast mailed reports, and meeting reviews where the
Ada FD project partners present their ongoing work. An Ada FD
review board, set up independently by the CEC, will negotiate
with the presently proposed project partners on any discre-
pancies there might arise. None, of the above mentioned re-
views are funded by this project, except for contractors
part. It is also pointed out, that the review is essential,
but it is the responsibility of the contractors, to formulate
their further actions in view of the review outcome.

3. "The FD shall base itself on the results of existing work
as far as possible; this includes the incomplete (out-of-
date) descriptions by INRIA (F), and DDC (DK); the work
at NYU -- SETL (US); as well as the Karlsruhe attribute
grammar (D)."

The work will start from scratch, but based on the current
state of the art, both in formal methods and in Ada formal
definition work.

The main contractor of the project has completed a rigorous
definition of Ada using the VDM approach, and intends to

%build, not only on that work, but on some of the people who
did it.

It is also included to study rigorous analyses and mappings

B1

.+ B- 15

4.,I
.,- .. .. ;; .?; -. ..- ;-.;i . -:-Q:-.h :?;;.:;i-- <.:?,.. .....-. ?:. . : < . .. .: :.+; . .. <-.:.>: . ;



di Aims and Objectives with Respect to the
Multiannual Programme •

from the Ada FD to the NYU SETL interpreter for Ada. 0

Since the INRIA work is basically using the same denotational
approach as will the presently proposed Ada FD, one can say
that it will also incorporate the INRIA work. But since this
latter reflects a rather early attempt which did not define
anyway near the full Ada (minus tasking and storage), and at
a stage where Ada was rather different from what it is now,
one may claim that we are not proposing any explicit mapping
from the proposed Ada FD to the INRIA work.

4. "The FD shall be developed using reasonably few and con-
cise methods, which shall be uniformly applied to the
whole language. The theoretical foundations for the
combination of several methods shall be given, and proof
and verification theories for the FD shall be developed."

We refer to the remarks made in connection with point 1 above.
One may claim that the proposed number of different specifi-
cation methods does not satisfy the "few" criterion. It may
certainly be possible, but, it is felt, not entirely desirable,
to cut down on the number of different methods. First we could,
e.g. give constructive, denotational models for storage and

-" the other nondeterministic features of Ada -- and that should
indeed be considered. Secondly one could, both theoretically,
and practically, express all of Ada in one style, using either
of e.g. de Bakkers, Tochers, or Plotkins specification me-
thods. This would solve the "combination" problem, but not the
accessability (readability, and conciseness) problem. We there-
fore maintain the presently proposed approach.

5. "The FD shall not bi unduly constrained by the necessity
to describe certain concepts like representation clauses,
implementation defined attributes, and some pragmas.
However, all possible effort shall be made to integrate

- these concepts."

An attempt to express some of these aspects will be made, and
it is here suggested to do so axiomatically -- and orthogonal-
ly to the remaining, complete and consistent Ada FD.

6. "The FD document shall be coordinated/integrated with the
existing Reference Manual."

This is a very important point, and is described more de-
tailed in the description of work package R, pg. 1-35.

7. "The FD shall be the source of derived documents for

.3-16



M~ -- *.--..-K-;

1-12
Orat

Dfnition Aims and Objectives with Respect to the
of Ada Multiannual Programme

a variety of user interests and needs; for example,
the FD shall be suitable for the verification of proof
rules for Ada programs.

Work packages P and R, pp. 33 & 35 outline our proposal in
this area. We tentatively define three groups of users of
such documents:

- Ada text book and reference manual writers, and Ada
language educators and teachers -- and, through them,
ordinary Ada programmers,

- Ada programmers interested in proving their Ada programs

correct, and

- Ada compiler and interpreter implementors.

For the first group derived doctments should describe Ada in
natural language terms, in a tersely, and Ada FD related
manner. See work package P, pg 1-33, for more details.

R: For the second group the derived documents should consist of
informally annotated, formal proof rules, and preferably
guide lines on their use.

For the latter group a derived document could outline the
methods that can be used to derive correct interpreters and
compilers from the Ada FD. Since the literature, by now, is
fairly full of such information this will not be proposed
done in this project. .-

8. "The FD shall be suitable for the validation of the ACVC
test suite. An effort shall be made to provide means for 77:
mechanically testing the ACVC against the FD (e.g. by
having an executable FD, or making an executable version
automatically derived from the FD by a tool)."

In this project alternative approaches will be studied:

- indirect executability, as above, via studies of
mappings to the NYU SETL interpreter. Work packages
Q pg 34, will study this aspect.

- proof of the ACVC program incorrectness/correctness
Work package S, pg 1-36, will study this aspect.

f.

B-17 I

Ci.: .: : , ..7-: ...;: .: : : :: : : : : ; : .- - ,-,7.L~':'C .. .,T.°. ,,..4,-



1-13

Aims and Objectives with Respect to the
Multiannual Programme

N 9. "The development of the FD requires support tools to
manipulate the FD document and to coordinate it with the
Reference Manual."

This task is taken care of by work packages N and 0, pp
1-31-32.

* 10. "All tools will be developed as (M)APSE tools."

Yes.

WN

,--.t



rh,
Draft
Format
Definitlion
of Ada

,'a.

CA

VON

-a..°

"I..

a.%
"-p

a-m

S.

456

4 " .
o. - .

* .1 L:..:2': 2 J .; ¢"'.,: .'' ',I :. ,i ." ,... . 7.... .. . . . .. . . :*4



1-14

Current State of the Art

5. Current State of the Art

It is widely recognized that software engineering, unlike the
more established engineering disciplines, is still largely at
the craft stage in that the techniques in common use lack an
underlying scientific basis. In particular, the early stages
of the system life cycle (requirements analysis, specification
and high-level design) are rarely treated in a disciplined
way by the software engineer. Yet, these stages are worthy of
particular attention since faults generated here have been
shown to be the most difficult to detect and the most costly
to repair. The growing awareness of these problems has led to
the development of formal specification and systematic deve-
lopment methods based upon recent advances in mathematics and
computer science.

In recent years there has been intensive research and deve-
lopment of a variety of approaches to formal specification
and systematic program development in a number of centres,
principally in Europe and North America. A large number of
real and laboratory applications have by now been carried out
and, at least for non-concurrent aspects of systems, a consen-
sus seems to be emerging regarding the desirable characteri-
stics of such approaches. Experimental toolsets to support
these approaches have also been developed and used on real
projects.

An ESPRIT preparatory study has been carried out in this area
by the Dansk Datamatik Center (DDC) and Standard Telecommuni-
cations Laboratories Ltd (STL). The report of this study is
in two parts. The first part is a broad survey of the state

pof the art in formal development theories, methods and tools,
comparing the situation in Europe, the U.S.A. and Japan. The
second part is an in depth evaluation of one particularly
well-established method, VDM. This study provides probably
the most extensive and up-to-date view of the field addressed
in this proposal, but other useful surveys of development
methods in general (not just formal methods) are available,
for example, the DOI Study of Ada-based System Development
Methodology the 'Methodman' document for Ada and the survey
of Software Tools for Application to Large Real-time Systems
(the 'STARTS' guide).

In the past, the principal approaches to formal methods have
been characterised as "model-oriented" or "property-oriented".
In the model-oriented approach, specifications and designs
are explicit models of systems constructed from well-defined
primitives. In the property-oriented approach, specifications
are given in terms of axioms defining only the relationships
of operations to each other (as in, for example, the so-called
"algebraic" approach).

3-20



Zhe 1-15
SDraft

Formal
Definit Current State of the Art
of Ada

Important centres of research and application in the model-
oriented school include the Dansk Datamatik Center, the
University of Manchester and Standard Telecommunication
Laboratories (for VDM), SRI International (for HDM), USC
Institute of Information Sciences (the GIST project), the
University of Oxford (for Z) and Higher Order Software Inc.
(for the HOS method).

Important centres for the property-based approach include
the University of Edinburgh (Clear), SRI International (OBJ,
CLEAR), MIT and Xerox PARC (Larch), the Universities of Pisa
and Genoa, the Technical University of Munich (CIP), USC
Institute of Information Sciences (for Affirm), the Technical
University of Berlin, and the University of Passau.

It is notable that the two schools now recognise attractive
benefits in each other's approaches and systems which attempt
to provide the benefits of both are increasingly being pro-
posed. Such ideas are evident at, for example, MIT, Oxford,
Manchester, DDC, Xerox PARC, STL and SRI.

In the area of concurrency there is much less agreement on
the "right" approach and a large number of contrasting theo- %
ries are being researched. These include algebraic approaches
(e.g. CSP from Oxford and CCS from Edinburgh University), net
theory (GMD Bonn), temporal and modal logics (Manchester X
University, SRI, Stanford, etc.,) and label-event and SMoLCS .
systems (Pisa and Genoa). In September 1983, a workshop
organised jointly by the U.K. Science and Engineering Research
Council and Standard Telecommunication Laboratories, STL, was
held in Cambridge (U.K.) at which many of the leading research- ".
ers in the field were present and the principal approaches
compared. The forthcoming published proceedings will provide
valuable input for this proposed project.

A number of attempts have been made to support some concur-
rency features alongside established methods for sequential '-
systems - for example CSP with VDM (at DDC), temporal logic
with HDM (at SRI), the rely/guarantee condition extensions to
VDM (at Manchester) and predicate-transition nets (at GMD).
An ESPRIT pilot project (the GRASPIN project) is attempting
to utilise Petri nets and axiomatic abstract data types in a
coherent framework. However, in general, combining various "
approaches based on differing semantic theories raises fun-
damentally difficult problems; the issues involved in this
were explored in a NATO-sponsored workshop organised by the
Dansk Datamatik Center in May 1984. It was attended my many
of the leading experts on semantics. The proceedings of this
workshop will clearly provide valuable input to the proposed
project.

B- 21U



1-16

Current State of the Art.
A number of formal approaches have been supported by experi-
mental toolsets, some of which have been utilised in real-
world projects. Notable efforts have been developed at
USC-ISI (Affirm), the University of Texas (Gypsy) and HOS
Inc.(Use-it). Database systems for specifications have been
explored at Xerox PARC (PIE). Notable work in theorem proving
has been carried out at SRI (Boyer-Moore), the University of
Nancy (Reve) and the University of Edinburgh (LCF), among

OR other centres. Significant programing environment efforts
have been carried out at INRIA (Mentor), CMU (Gandalf) and in
Japan (Iota).

It must be noted, however, that most of these toolsets are
experimental vehicles and could not be utilised directly in
industrial situations. (Exceptions are Use-it, marketed com-
mercially by HOS, and possibly Gypsy.) Considerable work is
required to develop tools capable of handling large-scale
industrial applications. It will clearly be necessary to
develop full scale database-oriented programming environments
based around formal methods. This highlights a gulf between
researchers and practitioners which must be bridged for any
method: the promising ideas emerging from research must be
proven in industrialscale case studies and packaged for
transfer and use in an. industrial context. Relatively few
'methods' have yet reached this stage of maturity which would
be characterised by the availability of significant published
case studies, textbooks and industrially oriented training
courses. (VDM is one of the most mature according to these
criteria.)

In terms of applications, the more established approaches
have been used on a significant number of real-world projects.

U. There appear to have been more of these in the U.S.A. HDM,
for example, has been used to specify and prove security on a
number of operating system kernels (KSOS, PSOS and SIFT).
HOS has been used on a number of embedded military systems.
Affirm has been used to specify and prove a security kernel,
various communication protocols and a military message switch.
Gypsy has similarly been used for message switching and for
part of an aircraft control system.

In Europe, the most widely used formal method in industrial
situations is probably VDM. VDM has been applied to a va-
riety of projects in a number of countries: Austria, Denmark,
the Federal Republic of Germany, the United Kingdom and Italy.
Applications include the development of compilers, database
systems, aspects of operating systems, and office automation
systems.

These formal systems have been tried out in various app-
lications, among these is Ada. These studies contain
attribute grammar definitions of Ada (Karlsruhe), incon-

B-22



*. 1-17

Fra Current State of the Artm Definition
of Ada

plete Ada (INRIA), DIANA-syntax, SETL executeable de-
scription (NYU), and the somewhat outdated DDC Ada FD.
The latter is the basis from which the DDC validated Ada _

compiler is derived.

- The summary above of formal methods and Ada definition
- will form a very strong base for a development of an Ada '
*. FD. Furthermore, current research will be incorporated

into the project - specially the ESPRIT funded RAISE (Ri-
. gorous Approach to Industrial Software Engineering) seems

to be able to contribute considerably.

a* I.

f.,.

"0

B- 23 A



1-18

d. Project Description

6. Project Description

6.1 Overview

This section provides an overview of the contents of this
proposal, and includes an overview of the deliverables.

The proposed Ada FD project may be seen to consist of five
major categories of work:

Selection of appropriate, "difficult" example subset of
Ada (xAda), selection of appropriate formalisms to be
used in a FD of xAda, and the trial FD of xAda -- all this
intended for review and approval of general approach.

. - The actual draft FD of ANSI/MIL-STD 1815A Ada.

- The derivation of a natural language description of Ada
from the FD, and their correlation to the existing ANSI
Ada Reference Manual(s); this category also includes li-
ason with appropriate standards organisations: ANSI, ISO,
ECMA, etc. as well as preparation of educational type of
documentation.

- Development of new, and adapting existing tools for the
manipulation of the Ada FD; and feasibility study of ACVC
test suite validation from the Ada FD.

- Review of Ada FD and informal, natural language descrip-
tions and correlations -- to be held at regular intervals
throughout the project.

The main deliverables will be:

- A draft Formal Definition (FD) of ANSI/MIL-STD 1815A Ada
to the extent, that the standard is unambiguous and com-
plete. Exhaustive annotations, and correlations to exist-
ing informal reference manuals will be made.

- Evaluation reports arising from regular reviews.

- Report stating the results of the study of ACVC validation
feasibility.

- Tools, written in Ada, and supported by an APSE, for hand-
ling the Ada FD, and prepared for the introduction of
possible proof systems and ACVC validation.

6.2 Work Packages and their Interrelation

This section contains a detailed description of the project
in terms of relevant work packages.

p 3-24



Dt~tt1-19Formal

of Ada Project Description

Work Package

WIdentification: A ,.1

Name: Start up

Purpose: Project initialization and liaison

Contents:

- Set up of tools, equipment, files etc. necessary for
project management

Establishment of contacts to other groups working
in the area (ANSI, ISO, ECMA, ... ).

- Construction of mailing lists and opening letters to
potential reviewers and users of an Ada FD.

Requisites: pre: None

post: WPs C-D

Man Months: 1

Deliverables: Report 1: Project procedures Is
Report 2: Review Procedures
Report 3: Review Groups (Mailing Lists)

(j) Review: Reports 2-3

(I) The reviews mentioned in this and the following work pack-
ages are external reviews, and is done via work packao V,
pg 1-39.

B-25..)-,°. . . . . . . . . . . . . .*"4 ~ * .. . * . *



1-20

Project Description

d

Work Package....4

Identification: B

Name: The R61e of the FD (Formal Definition)

Purpose: Defines the requirements to be fulfilled by
a FD of Ada -- identifies the various uses
such a FD may have.

Contents:

This deliverable defines the various user groups of an
Ada FD (incl. possible Proofs Systems for the Ada FD), and
the uses these groups may have of such a FD. Roughly speak-
ing the groups include (1) Ada programming language refe-

-'- rence manual writers (and, through them, *Ada programmers),
(2) Teachers of Ada programming, (3) Ada interpreter and
compiler developers, (4) APSE developers, (5) Computer
scientists interested in studying Ada related matters
(such as e.g. proof systems, formal validation, formal spe-
cification, etc.), and (6) International and national Ada
language standardization organisation members.

Requisites: pre: None
post: WP E-X

Man Months: 1

Deliverables: Report 4: The R61e of the FD of Ada

Review: Report 4

B-26



. 1-21

ornar Project Description
Delin tion
of Ada

Work Package

Identification: C

Name: Tentative Specification Language
4,

Purpose: Select a tentative specification language for
* a "difficult", example subset Ada (WP D), the

specification of which (WP E), can serve as a
basis for reviews and subsequent approvals.

Contents:

This WP will tentatively select the specification techni-
ques to be used for the full FD of Ada. It is to be ex-
pected that these migh14 include:

- Denotational semantics techniques for the specification
of the (sequential) deterministic aspects of Ada,

- Algebraic semantics techniques for the specification of
the non-deterministic (non-concurrent) aspects of Ada,

- Structural operational semantics (labelled event system)
techniques for the specification of concurrent aspects
of Ada, following the ASL-SMoLCS approach also this part
can be expressed in an algebraic style, and possibly

- Temporal (or interval) logic techniques for the speci-
fication of temporal (time) aspects of Ada.

The chosen techniques will represent the main streams of
established, international research in the area of speci-
fication techniques.

Requisites: pre: WP A

post: WP E

Man Months: 5

Deliverables: Report 5: Informal Description of Trial Speci-
fication Languages.

Review: By WP F: Report 5

a B-27

d'5 - .. -..- ,. -.' ',. . ' . '. , ,.. . . .; .. . ., - . ; .. . ,.. - . ' . , , ' ., .; ' , , "



.1_aor -Y 47 -T 1 R 7 1 .- -

1-22

A , Project Description

Work Package

Identification: D

Name: Example Ada subset selection

Purpose: This "difficult" Ada subset shall serve as
the basis for a trial FD, see WP E.

Contents:

A representative, but specification-wise "difficult" sub-
set of Ada is to be selected -- a subset illustrating all
relevant aspects of Ada, ie such which examplifies deter-
ministic, as well as non-deterministic; sequential, as
well as tasking; time-independent, as well as time-depen-
dent; static as well as dynamic semantics; syntactic, se-
mantic, and pragmatic aspects of Ada, and thereby also

.. the complexity of Ada.

L Requisites: pre: WP A

post: WP E-X

Man Months: 4

Deliverables: Report 6: Example "Difficult" Subset Ada

Review: By WP F: Report 6

B-23

% 4

) B- 23

4. 4. au



=-. -.- 1-23
Dra "

z rhetfiai Project Description
of Ada

Work Package
Identification: E

Name: FD of a "Difficult" example Ada subset.

Purpose: To show the feasibility, and appropriateness o
of the chosen formal specification method.

Contents:

A definition of the "difficult" example Ada subset, toge-
ther with exerpts of an informal, natural language anno-
tation of same, and its correlation to the ANSI informal
reference manual.

The actual work will be done iteratively. 3 persons will
work simultaneously on up to three aspects of the Ada
language (deterministic, non-deterministic, and tasking).
These three persons will submit early attempts, sketches,
drafts, for international review in order to guarantee
approval.

Requisites: pre: WPs B-C-D
post: WPs F-N

Man Months: 12

Deliverables: Report 7: Formal Definition of "Difficult",
Example Ada Subset

Review: See WP F

B-29

~-

. S° .. *



1-24

"rT Project Description

Work Package

Identification: F

Name: Initial Review and Approval

Purpose: To set the stage for the full, FD of Ada, by
assuring that the chosen method is acceptable.

Contents:

International advisory groups review the FD of the "dif-
ficult", example Ada subset (see also workpackage V)
its derived natural language explication, and its correla-
tion to the ANSI informal description.

This work package (F) is separate from work package V, pg
1-39, the general, ongoing review of ongoing Ada FD acti-
vities.

Funding of this activity is not included in this project,
except for the contractor part.

Requisites: pre: WPs B-C-E
post: WP G

Man Months: 1

Deliverables: Report 8: Review of WPs B-C-E, conclusions and
propose further actions.

Review: No

-r,-30

- '



Draft
Z Fema, 1-25
Definition

-of Ada
Project Description

Work Package

Identification: G

Name: Final Specification Language I

Purpose: Serves as basis (input) for WPs H-I-J-K-L
(Ada FD) and WPs N-O (Ada FD Tools).

Contents:

A complete description of the full set of formal specifi-
cation languages used in the resulting Ada FD. This work
consists of individual work of the specific denotational,
algebraic, structural operational, and other, semantic
specification notations, as well as on the possibility of
their combined semantics.

We refer to remarks made in the contents section of WP C.

Requisites: pre: WP F f..

post: WPs H-I-J-K-L-N-O-X

Man Months: 7 oo

Deliverables: Report 9: Final Specification Languages and
Methods -- a description of the
individual and combined semantics
of the chosen specification langu-
ages and methods.

Review: Report 9

.-i

bo °

. A

314

.5 -'



1-26

Project Description ;

V.
Work Package

Identification: H

Name: Ground rules for natural language explication

Purpose: To establish rules for the informal, natural
language explication of formal definition for-
mulas, and for the correlation to existing

P Ada reference manuals.
Contents:

Identification of rules for deriving natural language de-
scriptions, or explications (explanations) of the Ada FD
formula, and for the systematic correlation of the Ada FD
to the existing Ada reference manuals. This work is con-
cerned with "style". The target, natural language will be
english.

Requisites: pre: WP G
post: WPs P-R

Man Months: 1

Deliverables: Report 10: Guidelines on Ada FD Explication
Report 11: Guidelines on ANSI/MIL-STD 1815A

Ada FD Correlation

Review: Reports 10-11.

:.. ..

4:4

B- 32

-....A .



Formai 1-27
Definition
of Ada

Project Description

Work Package

Identification: I

Name: Formal Definition of Ada Static Semantics

Purpose: To establish a concise, formal definition
of all the statically decidable properties
of any Ada program.

Contents:

Two issues will be addressed:

- The design of an abstract syntax and a correlated

concrete syntax for the Ada language.

- The formal definition of the static semantics of Ada
using the formalism chosen in WP G, with respect to
the ANSI/MIL - STD 1815A Ada standard.

The work will be carried out in two phases of approximate-
ly equal lengths. The first phase results in a draft propo-
sal subject to an intermediate review. The second phase
ends with a review approved FD of Ada static semantics.

Requisites: pre: WPs G-R
post: WPs L-O-P-Q-R-S-X

Man Months: 12

Deliverables: Report 12: The Concrete and Abstract Syntax
of Static Ada, and their Mutual
Translations

Report 13: The Formal Definition of Ada Sta-
tic Semantics. A

These deliverables will be issued in two ver-
sions:

Reports 12- 13: half-way, incomplete draft
Reports 12-13: final draft

Review: Reports h12, h13, 12, 13

3- 33

o%

-A - AL -o



1-28
AA Project Description

Sb%

Work Package

Identification: J

Name: Formal Definition of Ada Dynamic SequentialSemantics

Purpose: To establish a concise, formal definition of
the dynamic semantics of sequential and non-

V deterministic (but not tasking) aspects of
the Ada language.

Contents:

Three issues will be addressed:

- - Design of an abstract syntax suitable for expressing
the dynamic semantics of Ada -- possibly correlated
to the DIANA intermediate language.

- A correlator to (translator from) the static semantics
abstract syntax language.

- A formal definition of the non-tasking aspects of the
Ada language. This part may involve use of up to two
specification languages, a denotational for the deter-
ministic sequential aspects of Ada, and an algebraic for
the nondeterministic, exclusive of tasking, aspects of
Ada.

The work will be carried out in two phases of approximate-
ly equal lengths. The first phase results in a draft propo-
sal subject to an intermediate review. The last phase ends
with a review-approved FD of Ada dynamic sequential and
non-deterministc semantics.

• Requisites: pre: WP G
post: WPs H-L-O-P-Q-R-X

Man Months: 8

Deliverables: Report 14: Abstract Syntax for Dynamic Ada
,A°,and a Translator from Static to

Dynamic Ada Abstract Syntaxes.
Report 15: The Formal Definition of Ada

Dynamic Sequential Semantics

These deliverables will be issued in two ver-
sions:

Reports h14- 15: half-way, incomplete draft
Reports 14-15: final draft

Review: Reports h14, 15, 14, 15

B-34



a

The 1-29

DrafF-o,,,i 1-2
Definition
of Ada Project Description

Work Package

Identification: K V

Name: Formal Definition of the Ada Dynamic Parallel .'
(ie Tasking) Semantics

Purpose: To obtain a concise, formal definition of all
the tasking, ie concurrent and time-dependent
aspects of the Ada language.

Contents: 4.

Only one issue will be addressed:

The formal definition of the tasking and time-dependent
aspects of the ANSI/MIL - STD 1815A Ada language. The
word formal means: to the extent, that the metalanguages
used can be combined formally.

U
The work will be carried out in two phases, as for WPs I-J.

Requisites: pre: WP G-R
post: WPs L-O-P-Q-R-S-X

Man Months: 12

Deliverables: Report 16: The Formal Definition of Ada Dynamic
Tasking Semantics.

This deliverable will be issued in two ver-
sions:

Reports h16: half-way, incomplete draft
Reports 16: final draft

Review: Reports h16, 16

4-

B-35

f '* ..•.........................................................................................................................I.



,- "f, - - -- - -

1-30 -

FT_
Project Description

Work Package

Identification: L

Name: Integration of Ada Formal Definitions
Purpose: To combine the three part Ada formal defini-

tion (as obtained in WPs I-J-K) into one co-
herent, consistent, and complete formal def-
inition (formal, as defined on page 1-10)
-- one which is suitably cross-referenced,
indexed and otherwise checked.

Contents:

Three consistency and completeness issues will be addres-
sed:

- Syntactic: among definition parts with respect to usage
of abstract syntax defined domains and function types.

- Semantic: between definition parts with respect to pre/
post conditions of defined functions, whether putative-
ly defined, as in e.g. denotational definitions, axio-
matically defined, as in algebraic definitions, or re-
write rule defined, as in structural operational defi-
nitions, etc.

- Pragmatic: between the FD and the informal Ada referen-
ce manuals.

The Correlation of the Ada FD to the ANSI/MIL-STD 1815A
will have as its ANSI/MIL-STD 1815A component a document
which is divided into a number of chapters, "one per group
of language features". This integration work package will
collect the appropriate parts from reports 12-13-14-15-16
(by means of the Ada FD Tool set) in a form analogous to
the ANSI/MIL-STD 1815A layout.

Requisites: pre: WPs I-J-K

post: WPs I-J-K-O-P-Q-R-S-X

Man Months: 8

Deliverables: Report 17: The Formal Definition of Ada

Review: Report 17

3-36



1-31
Oraft
--e
finotmon~a Project Description m

of Ada

Work Package

Identification: N

Name: Requirements for an Ada FD Tool set

Purpose: To establish the requirements that different
Ada FD user groups will put on a set of soft-
ware tools relating to the Ada FD.

K Contents:

A number of portable, APSE-based software tools for the
creation, maintenance and diverse uses of the Ada FD can
be envisaged:

- editors: line, full-screen, and syntax-directed

- a variety of pretty printers/displayers

- Ada FD syntax and type checkers, ie not checkers of the
syntax of Ada, but of the syntaxes of the Ada FD, and
the function types of its defined functions.

- interfaces to possible Ada FD interpreters

- interfaces to possible Ada FD based proof/verification
sub-system

interfaces to possible Ada FD based ACVC test suite va- ".
lidators

In this work package a set of requirements are established
for such a tool set.

Requisites: pre: WP E (L)
post: WP 0

Man Months: 5

Deliverables: Report 19: Requirements for a Portable, APSE-
based Ada FD tool set

Review: No

B- 37U



1-33

zDraft
For, Project Description
Oefintion
of Ada

Work Package

Identification: P

Namfaoe: Informal Explication

Purpose: To provide an english, ie. natural language

explanation of the Ada FD.

Contents:

The Ada FD is necessarily terse, and expressed in a formal,
symbolic language. To facilitate its reading, and hence
its acceptance and use, it is proposed that the Ada FD be
extensively annotated, in an english language, natural
style.

It is expected that different user (target) groups will
require different style explications -- the requirements
for these will be defined in WP B.

This work will be done with respect to (wrt) the individu-
al formal definitions -- as developed in WPs I-J-K, rather ..
than wrt. the integrated Ada FD of WP L. .1Y

Requisites: pre: WPs H-I-J-K-L
post: None

Man Months: 6

Deliverables: Report 25: An Informal Explication of the
Ada FD -- an Introduction

Report 26: An Informal Explication of the
Ada FD Static Semantics

Report 27: An Informal Explication of the
Ada FD Dynamic Sequential Semantics

Report 28: An Informal Explication of the
Ada FD Dynamic Tasking Semantics

Report 29: An Informal Explication of the
Ada FD Combined Semantics

Review: Reports 25-26-27-28-29

tl

3-39

%



, , i. . -. -. ' .- .. • .. . .. . . .- - - - - - - . -

1-32

Project Description

Work Package

Identification: 0

Name: Tool set Construction

Purpose: To create a portable set of APSE based tools
suitable for a wide group of Ada FD developers
and users.

Contents:

This work package consists of: "-..

- The FD of the architecture of an Ada FD tool set

- The design of such a tool set

-The coding of such a tool set

We refer to the contents description for WP N.

The present work package will deal with the specific is-
sues of the Ada FD: i.e. those for which the tools speci-
fically know that the object to which they are applied is
the Ada FD.

This is in contrast to tool sets that might have been de-
veloped for (ancestors of) the specification languages
(META-IV, ML4, SMoLCS, CLEAR/OBJ, ASL, etc.) used in this
project. Insofar as such (ie these latter) tools exists,
this project will adapt them to the Ada FD tool set,
thereby enlarging its scope and utility.

It is to be expected that certain tools already developed
by the contractors go into the above tool set.

Requisites: pre: (WPs G-I-J-K-L-N)

post: None

Man Months: 19

Deliverables: Report 20: Ada FD Tool set: Architecture.
Report 21: Ada FD Tool set: Design.
Report 22: Ada FD Tool set: Users Manual
Report 23: Ada FD Tool set: Installation
Report 24: Ada FD Tool set: Primer

Software: Portable, APSE-based Ada FD tool
set.

Review: No

B-~ 38 7

J.k



W~ W.

1T '-34
dd. " Project Description

'.b

Work Package

Identification: 0

Name: Feasibility study: Mapping to the NYU SETL
Ada Interpreter.

Purpose: To study the extent to which the Ada FD of
this project may be correlated to the exist-
ing SETL programmed interpreter for Ada as
developed by the New York University.

Contents:

There are two semi-formal, near- or fully executable
models of Ada: the Karlsruhe (FRG) University Extended
Attribute Grammar (EAG) description of Ada, and the New
York University (NYU) SETL program interpreter for Ada.

In order validate to Ada FD, and in order to investigate
the possibility of letting either of these descriptions
serve as a basis for the ACVC test suite validation it
is necessary to establish, reasonably formally, a "map-
ping" from (i.e. a correlation of) the Ada FD of this
project, to either or both these descriptions. p
This workpackage will study a possible mapping to the NYU

SETL Definition.

Requisites: pre: WPS: Q-I-J-K-L

post: None

Man Months: 2

Deliverables: Report 30: Feasibility of a Mapping from the
Ada FD to the NYU SETL Interpreter
for Ada

* -"Review: No

S3-4

*.*.*. 4 *...



AD-R172 747 PROCEEDINGS OF THE IDA (INSTITUTE FOR DEFENSE MMYSES) 3/4
UORKSHOP ON FORH.. (U) INSTITUTE FOR DEFENSE USLYSES
ALEXRNDRIA YR W T NRYFIELD ET AL. NOY 85 ID--135UNCLASSIFIED DECL 10092957S9 IDA/HD-85-30579 F/B 9/2 UI ON

lllllhll!llllE
Slfllflfllflfllfllflll

lllllllllllhl
!lIllllllllEEK
ElllllllllllI
ElllllllllllEI



.*. I hI , 33

II~ ~~9" II 110L

II

1*0 n l
1.2 LA-_



-on 1-35
DeA.ijtmon
otAda Project Description

Work Package

Identification: R

Name: Correlations between the ANSI/MIL-STD 1815A
Ada Informal Definition and the Ada FD.

Purpose: To correlate the existing informal and the
resulting formal definitions of Ada.

Contents:

It has been suggested that eventually the ISO will adopt I

an Ada standard which consists of two parts: an informal,
and a formal one -- much the same way as the CCITT has both
an informal and a formal definition of the CHILL language.

Also, to avoid, i.e. to attempt to alleviate (as far as
is possible for pairs of informal and formal definitions)
discrepancies between these, a systematic attempt must
be made to correlate them.

Finally such a correlation also serves to make the Ada
FD more accesible.

The work consists of producing two pairs of annotated do-
cuments, both electronically maintainable: one, derived
from the Ada FD, which correlates its formulae to the ANSI
/MIL STD 1815A document, and, another, derived from this
latter document, which correlates its sentences and para-
graphs to the formulae of the Ada FD. Both these documents
may need further, generally explicative notes.

Requisites: pre: WPs I-J-K-L
post: None (I-J-K-L (1))

Man Months: 4

Deliverables: Report 31: An ANSI/MIL-STD 1815A Ada Refe-
rence Manual to Ada FD correlation.

Report 32: An Ada FD to ANSI/MIL-STD 1815A
Reference Manual correlation.

This deliverable will be issued in two stages:
h31-h32 based on h stage WP I-J-K reports, and
31-32 based on final WP L reports.

Review: Reports h31-h32-31-32.

D_- 41U

%*! V



1-36

Project Description

Work Package

Identification: S

Name: Feasibility Study: ACVC vs. Ada FD Validation

Purpose: To ascertain the extent to which the Ada FD
may serve as the direct, or indirect basis
for a validation of the ACVC test suite.

Contents:

It has been argued that the Ada FD should, or could, be
used as the basis for a formal verification of the ACVC
test suite of correct and incorrect Ada programs. The pur-
pose of this work package is to study the feasibility of
this thesis. Different approaches are conjectured:

- direct executability of the Ada FD

- (automatic, or interactively assisted) proof/disproof
of properties of each individual ACVC program

- indirect executability via either the Karlsruhe EAG, or
the NYU SETL descriptions, or both -- either of which
have formally, or systematically been shown "equivalent"
to the presently proposed Ada FD.

Requisites: pre: WPs I-J-K-L-Q
post: none

Man Months: 3

, Deliverables: Report 33: Feasibility of ACVC validation
with respect to the Ada FD

Review: No

IR

N
'S-

! S'

.,...* ., .. . ,. . . . . . . ., . . .B- .... . .. .. .,. ,, ., . ,42,. .- ., ,,...,. : .



1-37
Z The

Draft Project Description
Definitioni
of Ads

A'..

Work Package

Identification: T

Name: ISO (ANSI, ECMA) Liaison

Purpose: To guarantee that the present project results
in a FD, which

- reflects as much as possible of the current
state of Ada as discussed within ISO, and

- may possibly influence Ada changes in the 1st
5 year Ada review by ISO, and

- will be ultimately acceptable by ISO as part
of their subsequent Ada Standard.

Contents:

Travels to ISO Ada standardisation meetings, and corre-
spondance with other organizations as determined from wp A.

It may be expected that the ISO liaison may lead to de-
sire by ISO or other official institutions that the current
project attempts to work out proposed changes to the
ANSI/MIL-STD 1815A (January 1983). The present project has
not included this in the ressource estimates, and does
not intend to do so.

Requisites: pre: None
post: None

Man Months: 4

Deliverables: Unnumbered reports: travels, deliberations
and status

3..

%p

Li- 43 m

*~*. -: .* -.. *~' .' V ~ *.-*/ *-,.



1-38

Project Description

Work Package

Identification: U

Name: Management

Purpose: To coordinate internal work packages, external
liaisons and reviews, partnership sub-projects,
and CEC liaison.

Contents:

Establishment, monitoring and control of rolling plans and
resources, budgets and finances.

Man Months: 26

Deliverables: Monthly and year reports to CEC

:;-44

.L.5%

'.5:.

'..°

A,..,, *

* "S '

%'°,'°



-.7 -W -W. -

1-39
Oratt-Fomai Project Description U

iof Ada

Work Package

Identification: V

Name: External Reviews

Purpose: To guarantee quality and acceptance of result-
ing deliverables.

Contents:

International groups of Ada and FD experts will be estab-
lished, consisting of experts in the relevant fields as
well as representatives from relevant part of the Industry.
Their members will be agreed upon by the CEC and
the contractors. The groups will be referred to as the Ada
FD advisory groups. These groups will regularly receive
draft and proposed final reports of the various Ada FD,
informal correlations, etc. The review process is then one
of obtaining input on the form and content of these docu-
ments. This will insure that all achademic points of views
are taken into consideration as well as the practical use
of the results.

The CEC and the contractors will set up a review board to
assist in evaluating the results of the projects, using as
a major input, the comments from the international adviso-
ry groups. See also sect. 6.3.5.

Funding of these activities is not included in this pro- '
ject, except for the contractor part.

Requisites: pre: WPs B, D, E (see WP F), G, I-J-K-L, P, R
post: WP -- accordingly

Man Months: 4
S.,

Deliverables: Reports: draft, and final review reports.

Bl

B- 45



1-40

Project Description

Work Package

Identification: X

Name: Educational Material

Purpose: To plan a set of tutorial courses on the use
of Ada FD and implement one of them.

Contents:

In order to enlarge the user group and make the Ada FD
accessible to people not familiar with formal definitions,
tutorial type courses will be planned.

The work package consists of 3 parts:

I. Focusing on the user groups defined in wp B, course
contents will be defined for each, emphasizing the
needs of that particular group.

2. Implementation of one of these (typically 2 week)
courses and

3. holding a trial course.

Requisites: pre: B-G-I-J-K-L
post: none

Man Months: 10 1 k

Deliverables: Report 34: Tutorial needs of specific user
groups Course notes

Report 35: Course notes and Instructors
manual

Review: Report 34

,B-46-'.

B- 46 . '



- 179r..7

~ 1-41
DeitiO Project Description
of Ada o

4.-

6.3 Management Issue

In this section two issues will be addressed. U.

- setup of the management organization

- work schedule and deliverable -zems list.

6.3.1 Project Organization .

The project organization is defined in the following organi-

zation chart.

IReview I.- l CEC
IBoard I

I Manager 117
Noard.

Prrjctui
madaer M LadaerI

Group T rop

I MebersI I embersI

B- 47



1-42

Project Description

6.3.2 Managerial Board

The managerial board is responsible for all decisions af-

fecting more than one partner, in particular:

- all contractual matters

- approval of all major technical decisions concerning re-
quirements for components delivered

- internally, by one Contractor to another

- externally, by one Contractor to the Commission or
other parties outside of the group of Contractors

- approval of significant changes in the development plan
and all changes that affect the delivery of a contract-
ual item to be submitted to the CEC

- monitoring the progress of work including quality con-
trol and quality assurance procedures.

The managerial board consists of one representative from
each of the contractors. The representative must be able
to represent his company in financial matters, and to nego-
tiate with the Commission on behalf of his company. He
will further endeavour to insure that his company satis-
factorily performs the execution of tasks assigned to it.

To resolve major technical problems the managerial board
may appoint fast working committees.

After having informed the others, each contractor shall
have the right to replace its representative.

The Managerial Board shall be chaired by the Prime Con-
tractors representatives.

It shall meet at least 3 times a year or, at every time
when necessary at the request of one of the Contractors.
Meetings shall be convened by the Chairman with at least
seven days' prior notice with agenda.

A secretary shall be appointed by the members of the
board. Minutes of the meetings of the Managerial Board
shall be drafted by the secretary and transmitted to the
Contractors without delay.

The Project Managers shall attend the meetings of the
managerial board.

Decisions must be unanimous.

-'o

B- 48

VI



Frm 1-43

Defini,, Project Descriptionof Ada

6.3.3 Project Managers 4-

Each of the contractors appoints a Project Manager. The project
manager appointed by the main contractor also acts as -

project coordinator.

Each project manager is responsible towards the managerial
board for

- the coordination and scheduling of all project tasks
assigned to his site

- the punctual delivery of any contractual item in project
activities of his site

- definition of suitable programming and documentation

standards to be followed in the project

- acceptance test procedures

- configuration, ordering, installation, and maintenance
of any hardware required for the project

- reporting to the Managerial Board about the progress of
the technical work

- presentation to the Colmmission and/or appointed techni-
cal experts

- maintaining contacts with the Ada related communities
mentioned elsewhere.

In addition to the site manager each contractor will have
a deputy project manager who will take over the respon- .
sibility of the project manager during any long-term
absence of the project manager.

The project coordinator is additionally responsible for
ensuring a continuous, consistent contact between
managerial board and project managers.

Among the responsibilities of the project coordinator are:

-co-ordination af activity plan,

- co-ordination of documentation standards and all matters
relevant to integration of the different projects sites, -

. '-.

3-49 .. %

.°, 0 4•



1-44

Project Description ". 

- preparation and distribution of regular overall pro-
gress reports to the CEC,

- organization of presentations and review meetings etc.,

- maintaining the formal contact between the managerial
board and the CEC,

- collection of the Contractors documents and statements
of expenditures and forwarding thereof to the CEC.

6.3.4 Group Leader

Each group leader is accountable to his project manager for

- the execution of the tasks assigned to his group

- the correct performance and punctual delivery of these
tasks in accordance with the specifications and schedu-
les approved by the managerial board

- issuing regular progress reports for the technical work
assigned to his group o, .-

- keeping the project manager informed about any important
problem (technical as well as non-technical) that might
arise in his group. In particular, the group leader
must report immediately to the project manager any pro-
blem whose solution might involve a change in the re-
sources allocated to the task

- co-ordination of all group technical activities in-

cluding

- adherence to standards

- specification of work to be performed by group mem-
bers

- specification of important interfaces

- quality control.

6.3.5 Review Board

The Review Board is a technical board which supports the
CEC and the Contractors with technical advice during the
project reviews and the project presentations. Its members
are selected jointly by the CEC and the Contractors (ref wp V),

- and should represent all user interest.

- --'---50

.". . . %'.' ' ' ** . *. '. .' . . . " . . . '' """""". .' - .-" "" .. ' ". . " .. . . - . ." . ' "." ". '' "'- -



1-45DfaM
De Project Description
Definitio

of Ada

6.3.6 Project Planning and Follow-up
a

Each contractor will set up procedures to plan and monitor
his part of the project. The procedures will include:

- definition of internal milestones (contents and date);
progress is measured solely on completion of milestones

- associating ressource estimates and allocating persons
to each work package

monthly reporting describing which results have been
reached, the ressources consumed and the overall plans for
the remaining part of the project (a rolling plan).

6.3.7 Project Reporting

For every calendar month there will be a Management Control
Report to the Commission. The Report will be two A4 pages
long and contain statements on:

- work package started in the last month
- work package completed in the last month
- work package delayed with reasons, and actions to be taken

to correct
- work package scheduled for the subsequent month
- revised project plan if necessary.

There will be Financial Statements every six months.

All project reports will be in English.

All deliverables to the Commission will be provided to all
partners and subcontractors.

6.3.8 Work Schedule and Deliverable Items

This is the planned division of work which is subject to
change during the project. Major Changes which influence .the
division of responsibilities between the partners, must be
approved by CEC.

B-51



- 1-46

C.C'

%.q

4L (Y_ - - - >

U-52



the

d Defin~tlonm of Ada

4 .%

I'

1%.

-S

7)

B-53 a



1-47
:t 'Ala DDC/CI4A

Manpower Resource Allocation: Month-by-Month/WP-by-WP -- First 12 Months

1 2 3 4 5 6 7 8 9 10 11 12 V
---- ---------------------------4.- -----------------4. - - + 4. 4.

1AIl/al I
-- I --------- -----------.------4--.. .-.- -.. .- - .

3 11/01 1

cI-I-I- 1/0 1/1 I111 -

--I ----- ----I -I I ------------------------------------- - ....- +
D I 1/1 1 /1 I,::.
------4-- -------- ---- -------------------------------------------

l 12/1 2/1 2/1 2/1l
------------------------------- ------------------------

I 11/01
-- -------------------------------- ---------+---------

G 10/1 0/1 0/1 0/1 0/ 1 0/1
-------------------------------------- +- --- 4-4- -------

1 11/01/

------------------------------------'4-.4-4-------.-

ii iiai'/0 1/01
---------------------------------4. 4 4-4--I-

l I0/1 0/1 0/1.
------------------------4- -4- -.- 4-------

LI
......------------------------------------------------------ +--------------

I 1/il// 1111 I0/11../
---- --.- ------- --- .....--- .....-+-...- . -.. ------------------- -. - I

0 1/0 I 1/0 1 1/0 1 0/1 I 0/1 1 0/1 1 0/1 1 0/1 1 0/1 1 I 0/1
----------------------------------------- 4------- -------

Pt
--I - 4--------------------------------------------------------------

Q . I
--------------------------------------------4- ----

----- ---------------------------------- -.- 4---------------------

l I/0 I h/01 1-/0,

--I - 4 - 4. - 4 -4. - . - 4. - . - 4. 4. - 4-4. - 4
.. . .*. ." .. . . . .+. . .+ . . . . ...I. . . . I ::.

. .-------------.--------------------------.-4.---------------------------------. ..

T I person DDC one-sixth tim, full 24 months

o I person DoC 3/4 time, I person CRAI one-third time, full 24 months I
-- ------------------------------- -- -----------------------------
v I1 person DDC one-sixth tims, full 24 months I

--------------------------------- ------------------------------------....--..... --....--- Ib

--------------------------------------------------------------------------------------------------------------

DDCZ U a 14X 4X U3 U3 U3 U3 3X 3aY l3Y I3Y

CR41 Z Z 2 I I Z I 42o I 32 I 4"

.Total I3W I3W I6W 16W 1W ISW 16W I7W 16W I7U I7U I6U

........ ..... ..... ..... ..... ..... ..... .... ..... ..... ..... ...

1: 1/12, 1: 7/12, Zs 1/3, W: 5/12, U: 11/12

B- 54



- . - - . .

Formal
Definition
of Ada DDC/CRAI

Manpower Resource Allocation: Month-by-Month/WP-by-WP -- Last 12 Months Summary

13 14 15 16 17 is 19 20 21 22 23 24 Sum WP
----...--.... +- +-4-+-+.---.----.---. .--- .----

A I1 1/0 IA
--.- ----. ------------4--....------------+-+--..4.-+- - -- -------.
i 1/0 B

*--- ----------------------- +- -+- -------------- ---------- ~
C 3/2 C
-----------------------------------------+------+ - + + - + - 4 ----- -- -

D 2/2 D ;
% - -4 ------- + ---- - + - - +--------------------------------- -- ---

E 1 8/4 E
--I-- --- + +--------------------------------I--------------- ---------

F 1 1/0 F
-- -- -+ -- + --------------------------------------------------- I----

G 0/1 I 0/7 G
....... ----.... -----....-----...----+.--- ---------------- ----- - - --
H 1/0 I

-- -- - +-+---- ----------------------------- --- - - ------------- I----
z 1/o 1/o 1/o 1/o 1/o 1/o 1/oI 1/oI 1/oI 12/0 I1 .

--I - I - I - I -. I -I - ----- - ----- + ----- - - - ..... -- .-------
J 1/0 1/0 1/0 1/0 1/0 1/0I 8/0 J

-I-I-I------I-I-I- - ------- I---
x 0/1I 0/1I 0/1I 0/1I 0/1I 0/1I 0/1 0/1I 0/II 0/12 K
--I --- I- I- - ---I- --- I- -I- ---- I- ---- I ------------- .---- ----- I----
L I1/0 I1/0 I1/0 I1/0 I1/OI1/0 1/0 1/0I 8/o L
--I - ---------- +---- 4 - 4--------I------- --- --- --- --- --------------- -

N 1/4 N
--I-- -- ------------------------ I--------------------------- ---

0 0/1 1 0/1I 0/ 1 0/1I 0/1I 0/1 l 0/1I 0/1 3/16 0
---------------------I- - - - - - - - I--- - ---------- .

P1 I/0 1I/0 I/0 1 I 1 /0 1 I1/0 6/o P
--I+-------------------- I--------------- 1---1------------------- ---

Q 0/1 0/1 0/2 Q ,
----- - --------------- ---------I- - - -------- --------- \

x I0/1 I 0/1 I o/1 0/1 I0/1 I0/1 I0/1 0/1 I 0/1 I 0/1I 0/10 x
--I--- - + I- - -.------------- I------------ ------------ ---- I----
R %/0 1 1/0 1 &j/0 /0I 1 /0I 14/0 IR ,
-- -------- - ---- 4----------------4 ---- +----------------.--------I ---

S 1 1 0/ 1 0/1I o/3 S
----------------------------------------------------------------- I--- --- I----

T I person DDC one-sixth tims, full 24 months 4/0 T
----------------------------------------------------------------- I--- --- I----

U I person DDC 3/4 time, I person CRAI one-third tims, full 24 months 18/8 U
------------------------------------------------------------------- J---- --- I---- w

V I person DDC one-sixth time, full 24 months 4/0 V

Sums:

DDC13 1 4Y 14Y 14Y 4Y 14x 1 4 14 14 1 2X I2X 12X I 85PM I

CRAIl3Z 13z I3Z 13z1Iz 13Z 14z 14z 12Z 12z 12Z Iz I 70 PMI

---------------------I- I I- - I I- - - -I--------------- --------"ot1I6u I 7u 1 7u I "uI17u I7VISI SI6I 14VI14VI13II 55 P.I -

X: 1/12, Y: 7/12, Z: 1/3, W: 5/12, U: 11/12

B-5 5

% . 7 . - -



1-49

.i a timi'l

ebb ai "a

21e

lb -41

ivpM,

T"-

II%

I35



OraftE

v-o

'4'N 
oa

S,:

U°
'oU

,

2-'

'";'"';; ' ~u*'" ) ' ×; :"-' ::: ;'' l _"'::mm un• mmmm mm nn"'':'"?'? "?'?::''?::':";: . .. ':,)? ;9n '":' ;'': ° :" " '"?': '.



-1-50 "•'.'

Project Description

WP Name Deliverable Items

A Start up Project and Review procedures,
mailing lists

B The R81e of the RD Report: The R8le of the FD
(Formal Definition) of Ada

C Tentative Specifi- Report: informal description
cation Language of the specification languages

and notations to be used.

D Example Ada subset Report: references to those
selection parts of the Ada languages, by

reference to the ANSI Ada in-
formal description, which will
be subject to a FD in WP E.

E FD of a "Difficult" Report: FD of "Difficult",
example Ada subset Example Ada Subset

F Initial Review and Report: review -- with positi-
Approval ve/negative recommendations:

whether to continue, or redo
parts of WP E.

G Final Specification Report: informal description
Language and formal definition of the

individual and combined seman-
tics of the chose specifica-
tion languages and methods.

H Ground rules for na- Report: Guidelines on how to
tural language ex- extract and correlate informal
plication descriptions of Ada from/to an

Ada FD.

I Formal Definition of Report: The Formal Definition
Ada Static Semantics of Ada Static Semantics.

J Formal Definition of Report: The Formal Definition
Ada Dynamic Sequen- of Ada Dynamic Sequential Se-
tial Semantics mantics.

K Formal Definition of Report: The Formal Definition
the Ada Dynamic Pa- of Ada Dynamic Tasking Seman-
rellel (is Tasking) tics.
Semantics

L Integration of Ada Report: The Formal Definition
Formal Definitions of Ada

1_-53



1-51 
% ,

DraftDd, Project Description

of Ada

System

WP Name Deliverable Items

N Requirements for an Report: Requirements for a
Ada FD Tool set Portable, APSE-based Ada FD

tool set.

0 Tool set Construc- Report: Ada FD tool set:
tion architecture and design, users

manual, installation manual,
primer, etc.
Software: Portable, APSE-based .
Ada FD Tool set. -

P Informal Explica- Report: An Informal Explica-
tion tion of the Ada FD.

Q Feasibility Study: Report: Feasibility of a
Mappings to the Mapping from the Ada FD to
NYU SETL Ada Inter the NYU SETL Ada Interpreter.
preter

R Correlations between 2 Reports: The Ada Reference
the ANSI/MIL-STD Manual to Ada FD Correlation, VW
1815A Ada Informal and: The Ada FD to Ada Refe-
Definition and the rence Manual Correlation
Ada FD.

S Feasibility Study: Report: Feasible Ada FD rela-
ACVC vs. FD Valida- ted models for ACVC test sui-
tion te validations.

T ISO (ANSI, ECHA) Travel and Status reports.
Liaison

U Management

V External Reviews Reports: draft, and final re-
view reports.

X Educational Materi- Report: Tutorial needs of
al specific user groups.

All items with exception of software developed under work-
package 0 and management reports are public.

B5 9

B- 59 -



S.,

S

4/-I

k

is' ~

St

--. 5

-5%.

5%

5%~

a-
5~ .5

a-
- -4....
~45 ~

ba-

S..

-5

a-. *5

* 4.5
-. ;Jh%..

~ 5

0~ *~*j S.

St

-.

p A

5%

as.

*~ Trw

~ a-S

.55
4 .5 5.

*T
St

13-60
.5

a.,

*~~- -: t ~ ~ ~ 'a



The Draft Formal Definition of Ada®
Commission of the European Communities: Multi-Annual Programme

Towards a SMoLCS Based Abstract Operational Model for Ada

E. Astesiano, F. Mazzanti, G. Reggio

20 August ,1985

'Aai eitrdtaeako h SGvrmn AaJitPormOfc



Fc-mi

of Adan

This documaent is a deliverable related to the actiyitV of work pakages C andi D.

In this report the rystivations of the choice of an undorlWi~ n ode for Ada end its main

fuatures are outlined.

B- 62



D~raft

Defin'tton-of Ada

Par 3

TABLE OF CONTENTS --O

' INTRODUCTION .............................................................. 4

2. LOOKING FOR AN INDUCTIVE STRUCTURE .................... 6
2.1 .4 hp*&*x drives ,Irwtore ........................ 6

2.2 A me drives sirwlare e( 4d prufruai................ 15
2.3 m0ltime (.r * ler" am*/....................... 19

3. GLOBAL INFORMATION ..................................................... 21
3. 1 EaWrmear.......................................................... 21
5.2 Atmrp Sarwtar* .................................................. 24
3.3 Plfbr Wb(rint .................................................... 25

4. THE ATOMIC ACTION PROBLEM ......................................... 2?

5. OTHER ISSUES................................................................ 29
*5.1 Expitit iM........................................................... 29

5.2 Prt llsi,............................................................. 30
5.3 1lrAtenati., h AW~twp t .................................. 31

6. CONCLUSION ................................................................... 32

7. REFERENCES .................................................................. 33

B- 63

' .1 1***



'"VWX 4 - Form'l
Defin tron
of Ada

PaV 4
'JII

I 0 INTRODUCTION

We egree with the opinion strongly put forward by E.K.Blum in (Blum 841 that any reonable

semantics of Ads should rely on an underlying semantic model, and that we can be misguided if we

just look for a syntax directed semantics without a preliminary study of such model. This is
particularly true of Ade which follows a sequential declarative/imperative style even when
introducing concurrent features (e.g. the syntactic construct for the task creation has the form

of a declaration), so that there is no esy relationship betvween the text of a program end the

states of its executions.
Nevertheless, since t methodological Importance and the acceptance of the syntax directed .

approach is out of question, we think that an effort should be made for giving a syntax directed
sementics relying on a clearly defined end understood underlying model.

In this report we will outline the motivations of the choice of a model and its main features. In
another report (Asteuino et al. 85 bI) it is shown, on somn sample languages With Ade-like

features, how to connect an underlying model too syntax directed apprwch.
We start from the assumption that the behaviour of an Ada program is represented by a
concurrent (flagged) transition system specified in the SItLCS style (see [stesino 84 for

an informal introduction and (Astesiono et 01. 85 a] for foundations)

We vent to invetigete the overall structure of thisspecifiction, I.e. the Possibility of
defining it in on inductive way as well as the overall structure and moaning of the needed

information, structures end actions.

In defining this operational model we try to romain as much abstract as possible, modelling
explicitly only the semantically "non- hIlddeble" features of the language.

In the project, the semantics of Ada will be given in two ports: a first one specifying the static

sementics of the language, end a second one spcifging its dynamic (sequential and concurrent)

aspects.
As this model will be used asa reference in the description of the nmic sementia of Ado, it

needs not to reflect all the properties alredy stated in the static semntic pert.

This approach is rather different from the standard one adopted in giving denotational semantics,

In which often static and dynamic semantics are speCifled topther (e.g. mlolling type checking

as if it occurred dynamically); indeed we mume that our programs are always correct from the
pint of view of static semantics (e4. scoping and type checking).

Being our model more dynamics-oriented end las stetics-oriented, it seems reasonable to make

somne mumptions about the syntax of the program, which may simplify the overall description

3-64



D efinition
ot"Ada

Peg. 5

of the moade).
for example, a useful assumption is that all the identifiers (introduced by declarations)
appearing in different plae in the source tex are different. This simplification allows to
aso ciate to each name, at each poi nt of the text, a unique fmni ng; with this approach I ndeed,

* problems of hidi ng or oyerlead rg are supposed to be resolved al most completel V i n a previous _

* step consisti ng i n a si mple translation anid checki ng of the source Ada text.

W.

B- 6 3



Deirvc

2. 0 LOOKING FOR AN INDUCTIVE STRUCTURE

A baic idea of the SMLCS methodology is that a concurrent system is mowdelled as a libelled
transition system whose States Consist of the states of the component procse (subsystems),
plus some global information. These states are usually represented as couples -

I1 $2 1 35 1 A.sr, , Of >
where $1l 1 2 153 1...I 3n isa 8multibet Of states Of the Component proseM.

The transitions of a state of a concurrent system are inferred from the transitions of the
component processes by means of formulas of the form:

$1f)$-A 5A :> n - S

Given aasi rniton system, specifying the structure of the component processsd soe
saaeesrltdt ynchronization parallel composition and monitoring, we con produce the

final transition system in a canonical way using the StMLCS rmthodology.
If the component prse are themselves concurrent system, they con be specified in the *arm
way. A StoLCS specification of a system may be I nductive, as It Is typical Of the SOS approach
[Plotkin 811.

It is not evident hovanAde program might be mapped into one of thteinductive or hierarchical
structures in a rather natural way. Several alternatives are discussed, together with their
advantWagnd wea k poi nts.

First of all we must give on intuitive meaning to the hierarchical concept of "subsystem" In
general it is useful to asocae a subsystem with the execution of some syntactic construct of the
language. for example, if we want to put in evidence the concurrent structure of a program, we
might represnt by a subsystem the behaviour of a task; otherwise we might represent by a

* subsystem the behaviour of a block, or task, or procedure, putting in evidence the nested
structure of all constructs.
Then we must define which is the relation defining when a subsystem is a component of another
subsystem, and whet is the information modelled in each subsystem C

We begin with a discussion of two rather Interesting alternative, bow respetively on the
mostershi p dependence between masters and taks and on the envi ronment/store structure.

2 .1 A *pe*w drives ta i *tk .ra-tre
I n this section we suppose that an Ada program is compoe excl usivel y by tasks (types) (i.e. no

B- 66



DefinitionI

of Ada

Pap 7

subprograms nor blocks are used); this allows us to give a subsystem a simple meaning (task
execution). This restriction might be removed easily but now it allows us to put in evidence

with the least effort and vithut any loss of gynerlity the problems related to the hierarchical
decomposition of en Ads program.

In this model the direct inclusion relation between subsystems explicitly represents the direct

dependenoe relation between tasks, i.e.
if subi is the subsystem corresponding to the tak T1 ,and

3 is the subsystem corresponding to the task T,
then sub is e subsystem of s u==u TI isadirectdepndentof T.

When a new tesk X is created, a new subsystem is crested within the subsystem correspondi ng
to the task "mester" of X. In this wag, the structure of the system explicitly models the

dependence structures within a program. We can observe that in this way the subsystems
corresponding to all the taks which are direct or indirect dependents of a task T, ire included

(st verious levels) In the subsystem correspoding toT.
As a conMuence, all the interections between tsks bas on this dependence relation are
modelled in a very natural end simple way.

For example the effect of in brt sttemnt on a task is completely defined as a transformation

of the c.rresponding subsystem (this subsystem and all its component subsystems become

"abnormal" or completed), ellowi g a direct representation of whet Is specified in the manual.

If we suppose that a subsystem is represented by the following scheme:

(task-name, task-state, ectual-action, subsystem II ... I subsystem n),

or using a graphic notation (following the style illustrated in [Djorner et il. 601):

-6...

B- 67 , .;

- I& '; ~ 4~ .i~y ~ . K;-V~ ~*-.~ ~ '~ -'.



SFo'rmal2
I Defnttion

oft Ada

dauk- rme al p .task- state,... 3-

tsk-nome b g :tuel-ection,... -

subswst" I subsyste n -

(note that these graphs can be formolly defined)
then the effects of an abort statement on the task T I can by illustrated, for example, by the

follovi ng transformation of the corresponding subsystem:

<TIactive,... ,T2,active ,delay(...), T, m ,if .... -I (T4.termineted,....

becomes

or using the graphic notetion:

(T speccctive,...te lu:.

(T I body,...)

4T21ody,... cT boy,...)

T43pec,actlve....)

(T3bo ,.."-

become:s:

BI ' ,-p --'-'.,-,.- .-- .-" ---. , , - , .- .--- - '.- ,-- - ----- -.- . -.--. -1 .- ---



FormaiDefinition

of Ada

icT 1speCbnrmel..>

I(T I1body,...) ,

(T2spec,completed,...) (Tspec,termi nated,...),

MT25 d y,...) (T4td y,...> ,

JT3specobnormel,...)

(T3bodl,....

Analogously task termination is easily modelled as occurring when the corresponding subsystem
is 'completed' and all its component subsystems (if any) are "terminatable" (a subsystem is

said "terminatable" when the corresponding task is terminated or suspended on a select

statement with an open terminate alternative and all its subsystems ore "terminatable"),

fIlloving strictly the menual description of this event.

Apart from allowing a natural representation of these synchronized actions, this model presents

some disadvantages in describi n other kinds of interactions, not related to the definition of the
dependence relation between tasks.

As a consequence of the Ads definition of dependence, it 9y happen that when a task is created

by the evaluation of en allocstor, its master is net the task which has crested it but soe other

task at a higher level, more precisely the task which has elaborated the corresponding access

type declaration. In this model the request for task creation has to propagate upwards and the

subsystem corresponding to the creating task has to interact with some higher subsystem (by

synchronization or by reading its information) in order to deal with the activation of the

created tasks.

This to fn prticular Illustrated by the following simple example:

B-69



Drart
Formai
Definton
of Ada

Par. 1041

task MSTER;

took 6edg MSTER is

took tps T is ... eed T;

tpe RT is m ss T; -- the task "MASTER' declares the access typ
-- designati ng T

tok bedy T it ... eniT;
tak INNER; - - this is a nested task within the task 'MASTER"

task bedl INNER is
task CREATOR; -* this is I nested tusk within the tek "INNER"

taok behl CREATOR is
X: RT : e m T; -- the tak "cretor activates an Instance of T

begin -- (vhich is a dependent of "MASTER")

*ad CREATOR;

bellia

end INNER

etd MASTER;

the situation during the evaluation of the allocstor nev T is illustrated below:

MIAST E R.t.,bei n...,INN[RE in,...,CREATOR hCtivtin,...SST ,( XALLJE1Y.,...•

or uin the alternative graphic reprmentation:

B-7

,JI

lB- 7) U



Formal
-of Aaa

(MASTER spactive,...,

(MASTER bod ,begin .......

(INNER speactivm... XALL speactive,...,.
, -..1

(INNER bedi ....... 4XALL body,ICREATOR spa, act"tin ...

CREATOR Imll ,...INWT,...

In this cse the subsystem correspnlng to the task "XALL" is created eta higher level then the .

subsystem corresponding to the task *CREATOR' (vaitii for the completion of the activation of
XALL).

This hierarchical structuring should flov us to split the description of thetevironrent and the

store at different levels in the model folloving the principle of *information hiding'.
Raasonobl V, e may think to associste to each subsystem the local environment and store defined
by the elaboration of the declarative part of the cerresponding task. References to local
definitions and objects (ie. defined in the declaratie part of the corresponding task) are
dmcribed rather mturalT; references to noo-local definitions and objects imtd are
represented in en unnatural heavy way. In fact th dependence relation betan tssks does not
correspend to the natural structure of the environment and so It my happen that references to
non-local entities (here and In the following we mean by entity an nil1~j, end for object an

&1ojet /LRM 3.1(1 ), 3.2(0 )/) have to propagate upward through subsystems which should
be not visible nor scrsoieble to the task (this is not a nice property). This situ tion is

illustrated in the following example:

B- 71i

., - .. _-. . ' - ,' % ,,°% .w %.. .,. '. . ,, ."% "% .. % . .. /- *,-.-." ' " .. - o .'.'-.f. .'. '-".A '



Pae 12

i

task OUTER;
tek bdg OUTER is

X: INTEGER; -- ins declarative part ore declared some entities.

tesk tgpe T; -- nd a task type T

task bedg T is

X:S 3; -- task intances use some preiously declared objects
*mdT;

tesk CENTRAL; -- an other task Is declared in the some declarative port
task bidV CENTRAL is

Y:INTEGER; -- entities and objects may be declared locelly

INNER:T, -- but ore not not vislble from an Instance of the task type T

emd CENTRAL-
b~i a

#ad OUTER;

the execution of X:=3 by the task INNER is illustrated below:

4)UTER otv,..., ( CENTRAL AI Q., ...,( INNER,2Wnv, X:-3o..)

or usin the alternative graphic representation:

W)UTER Ipecoctive ........

4CENTRAL spec ,ective......

I e.:
(CENTRAL I61g...) ,

J (INNER spt live......

INNER bol ,X:=3:

33-72 ,'

. .1 .. '. ¢-- ' ' ' :::--.--"-" .,'-",.,-",L,-".,:.,", " - ,.-'.",-'-". . ', ,'.V .' ." ---- '



Driti

Formai
Definiton

P1t 13

Though INNER is a subsystem of CENTRAL, its entity accesses should propagate at lst to the

OUTER subsystem (skippinu the CENTRAL subsystem).

These references In fact should In general be propagted from the subsystem corresponing to

the task vhich hes created a nov task KT, to at least the subsystem corresponding to the task

vhich has elaborated the declaration of the type of NT.

One of the important properties vhch make reasonable a hierarchicel structure is thet from the

outside of a subsystem it is not required direct tki g of the component subsystems. This
property is verified by this model only partly, indeed, though the local environment and store

of a subsystem con be wed only from inside of the subsystem, other Information about the
subsystem Itself must In general be visible from higher levels. A task of a given type T may be

in general ac isetble to other tasks vhose type is declared at the same level of T.

In this model it is not difficult to build an example in which 6 subsystem SI might Interact

(heving visibility of it) vith another more nested subsystem S2. This situation may occur

vhen tasks are passed as parameters in entry calls as Illustrated in the following example.

task OUTER
task beg OUTER Is

task tgpe T Is eirri EE; emiT; -- atasktype T isdeclared

tak bodg T is... em T;

teskSl is oltrVE($2:T); omdSI; -- a tskobjectiscreated,

tosk bed; St Is
.W I -- villi g to receive, as an entry parameter

emept E (S2:T) i S2.EE end octopt; -- a tesk object vhese type is T

taskS; S- In the same declarative pert of the other tasks
tak bedl S Is on other task object S is created

$2 :T; -- ercreates etok object (of type T)

hae -- (the ne instance is a dependent of S itself)
31. (52); -- the Mv inetWa s than paUsed to$1

sad S;

end OUTER;

B-73

- C *o%



Dpfniuon

) ti Ada

Pap. 14

the situation during the cell of 52 .EE is illustrated below:

cOUTER&acIve... t SI ,Allinjg, S2.EE,1 c S,in- rendemvus, Si .E( ... ),'S,cie .....

or wsing the alternetive graphic representation:

4IIUrER specective...I dUTER beft..
4pec~in-rendezv us,..,.) 4S ISP Alling ...

429pec,actv,...)

S I, which is at ahigher level than S2, issues an entry cell to S2, which ay be not willing to
accept it.

The conclusion is that only pert of the Information about a task could be modelled within a
subsystem (i.e. information about local environment and store), and thot other structure* ore

* still i eded in order to maintain the information about rendezvous (queues, state of entries...)
task attribute's Values ('ALLABLE, *TERMINATED, 'COUNT), state of the task (activated, in

This information about a task, which cannot be directly modelled within the corresponding
subsystem, could either be defined as global or split at different levels In the dependence driven
structure.

But even assuming a global the needed information, still we have the problem that modelling
rendezvous requires somne kind of synchro idaci between subsystems In different
branches of the structure , which are at least "unpimusnt " to represent. A possible
alternative might be rat to model this kind of actions a synchronous actions, for example
mode'lling rendezvous by means of melsae exchenges, wing shared memory, between procese

Bi-74



Dran'

Formal
Definition
of Ada

(Idee In this cae an explicit abstract represntation of tak synchronization would be lost).

The situation doe not change if we release the initial hypothesis that a program is composed
exclusively by tecks (types) end either we mociete a subsystem to the execution of each master
(tink, block, subprogram) of the program, or vs associate a subsystem to task executions on] y.

Note: The problems illustrated previously are put in evidence by the border-line case of a
function returning a tak which was a dependent of the function body.
In this case we have that the subsystem corresponding to the function body no longer exists

(becmuse the function is terminated) though the task corresponding to one of its components is
still accessible, for example It can be chocked for terminration (evaluating its "TERMINATED
attribute, or trying to start a rendezvous) (really it is forminated') (Information about "

subsystem which might no mare exist should be kept somewhere). -

2 .2 A x*N &rIves strwtore #fA*E prqfra

Also in this section vs consider first the case in which an Ada program is composed excl usivel y
by tasks (whose behaviours are modelled by subsystems).%%

In this model, if a task T delares severel tak types, the subsystem contained in the subsystem
aesoae to T are the subsystems associated to all the Instances; (taks declared as objects,
created by allocators or s subcomponent of other objects) of these teask types- Ite

if subi Is the subsystem corresponding tothe task T, ,and
s lsathe subsystem corresponding to the task T,

then subi is a subsystem of a -can type ofT1I is declared in the declarative part of T.

VIP In this way the dynamic structui a of a program directly reflects the actual structure of the
environment (and store). This apprah has been adopted in other operational models for
sequential /parallel languages ( we I(hrryV 711) (Johnston 711)

Some atvantsges of this approech are its similarity to other standard operational modls for
sequential languages, end the fect that in this way references to local end non-local definitions
and objects are represented in the most natural and simple way.

p On the other side we should not noed to split the Information about a task at different levels of
B- 75



F-m-ai

Ad it Ada

Pape 16

our structure, because almost all the visible properties of.a task could be recore at the saein
level of the corresponding subsystem (scope rules assure us that a component of a subsystem is
not visible from outside of the subsystem)

As in the previous case the effect of a task creation should proagte upward, in order to requi re
the creation of a new subsyjstem, at the level of the declaration of the corresponding tyjpe (and 7
similarly it happens for subprogram calls).

But a major problem with this approach Is posed byj the representation of all the 'dependence
driven" synchronized actions.

For example, starting with termination problem, a task suspended on a selec statement with
an open terminate alternative should look at the state of its master (is it completed?) in order
to decide whether or not to terminate, even if its master is not visible in its environment (it is
an usual case in Ada). This situation, requiring otherwise an seem to a deeper subsystem,
destroys our hope of keeping all the Information about a task local to the corresponding
subsyjstem. The following is a simple example of that:

teak OUTER;
task body OUTER Is

task t~peT Is antry E, ;@adT; - -a task type TIs declared
teak bodilT Is

select accept E, or terminate; who v i.Instance njy exacute a selective
-- weit

end select. -- (they can termna nte if thei r master is
-- completed)

end T-;
task INNER; -- a task object INNER is created
task bo; INNER Is

X:T; -which creates a newnatnce X of the
-- task type T

begi ...- X~s a dependent of INNER)

*ad INNER;

ead OUTER.

-76U



FomaA AOefinttaon- ot Ada

Pop. 17

the situationduring the execution of the selective weit is illustrated below:

<OUTER~Active,... (I NNR tjn.-* Xsse ,slct.or .. er mints,..

or usi ng the alternative graphic representation:

(OUTER specactive ...

4NNERap~cactive,...> 'apecsuspendd ...

(INNERbod ..... (X bodcusct ...ar.termmste,.>

Obyio usly X dons not have an y visi bi Ii t y of I NNE R whi ch mi ght be nested eve n mre dee pi y

Moreover the resulting synchronized action (of the termination of. amater and all its dependent
tasks) should involve several subsyjstems in general spread across the structure ins completelyj
arbitraryj way.

Exactly the same problem arises @bout the sbort statement: the tasks Which should become
abnormal or completed are spread, without anyj constraint, across the whole structure.

It follows nsrilyj that the actions of this kind should be treatd a top level synchronous

actions (a possible alternative might be not to model this kind of actions a synchronous actions,
for example modelling conditional termination byi means of uail exchanges between
processes; the disadventagets of this opprsh hav alrady been mentioned).4

We can observe that even synchronos actions related to rendezvous my involve subsystems
located at different levels of the structure, but in this case the situation is rat very different
from the previous model, sod it is adiract wnmquence of the language features (allowing

synchronized actions between taks at different levels in the environment)
2-77



'of Acia

Pop 18

Nevertheless we con observe that in this case, as a consequence of the natural structure of Ads
programs, entry calls can never occur from the outside of a subsysatem towards in inner
subsystem, but always from the inside towards outside (a task is always within the scope of lt
type Of the task that it is celling).

In the case of full Ada programs (i.e. releasing the previous restriction), in order to preserve
the advantages of a scope driven structure, we must represent subprogrem executions like task
executions (assoiting a subsyjstem to ech subprogram activation, at the level in which the
subprogram ows declared). But in this way we loon an explicit modl of concurrency, treating -

in a uniform way sequential and concurrent constructs end mixing these conceptually different
aspects.
The next example illustrates this issue:

task OUTER;
tak beig OUT ER Is

procedure Q Is ... tod Q;
task INNER;
task body INNER is

end INNER;m
*bon...

#od OUTER,

the situation during the execution of Q is ill ustreted helov:

OUTER,octivt,... , <INNERgjLLjW,Q,, , Q,2Sjr

or using the alternative graphic representation:

* B- 7 r

P-7.e- . . ..7* * * . ' *~ * . . . 5. * * * ~ 5.- ' . - ' -



Formai 
.. . . . .

of Ad'a

Par . 19

<OER bod~
<NNERaSpec,clng , dl~c ,aCtivS.....

*4OL~rE~~dg. ' (JNNER hedq Q, Q~~

We can observe the similarity in the represntation of Q end I NNER (a proceure and a task)

2.-3 1.' *ttata h~r a lHnriZSW AW 1

Looking at the problems which arise when we try to model inductivel y and hierachically an Ada
program, we have to ask whether these problems are related to the model (we have root found the
right structures in order to describe properly an Ada program) or to the languagie (does it
really exist a semantic inductive structure correspondilng to the inner structure of the

-A...language?).

We can In fact observe that an Ada program execution is driven by means of manny different
structures (dependiences, etivtions, scoping) without a main one. Whichever relation we
choose, in order to define hierarchically our model, we should deal in every cane with the
introduction of some kind of global information, and/or with an heavy representation of some
kind of synchronized actions.

So we think that perhaps the best solution is not hierarchical, but a single level ane.
In other words we diraltly model a program as a set of concurrent promssesli (all at the saein
le). Apparentl ythis chice my Seemlck!ng abstraction, but in the end it is the ctnicg that

models In the closest way what is expressed in the manual :'Tasks are entitles whos execution
proce in parallel in the following sense. [Each task can be considered to be executed by a ogical
procassor of its own. ... a. also the rendezvous is described without any reforence to a
structure. And perhaps it is nt a cm that other semantic models for Ada (eg. [Djorner at al.
801 [Dever et *1. 831) have adpted almost the same approch. Environment. immory,
dependencas, end other information might be modelled as global and shared.

In conclusion this solution seems to evoid all the major disadvntages of the previous ca,

73-79



S...i
rPTddA

Pop. 20

though it loses some of their advantages.

Hoverer note thet moedelling all the taks at the seine level, does not mean thet we have to

abrndon an appropriate 3tructurirn globel information (e.g. cope-driven for envi ronrent and

store).

I

IWO

a,,

Ap,-

- . %

. .n
- -- *** 

) .•. V * 0



Deinon

of Ada

Pap 21

3. 0 GLOBAL INFORMATION

In this section we Ill ustrate the requirements (and their motivations) about the structure of the
global informastion In the linearized tasking model.

In the SMLoCS approach the local information of a subsy~stem is rot directly Visible from other
* aubsyistems at the sme. level. This Implies that whenever a subsystem nees some local

Information about an other subsystem, It may obtain that either looking in some global part
* (global information) or by means of a synchronized action with the other subsystem during

vhich theneded informationis~roceived.

Unless we vent to model non-laul memory and environment acessby means of synchronized
* actions (with an unpleasant confusion in the representation of concurrent and sequential aspects

of the language), we have that memory and environment should surely be shared (global)

Information, as well as other information, like dependence relationships, task states and entry
states, which is In general needed by more than one task.

On the converse, the information wsed only by a single task might be represented as local
* informaetion of the task itself (for example the set of the names of the tasks to be activated after

the elaboration of a declarative part).

An overall mea- requirement over all the structures within the I'D is that they should be kept
* as abstract as possible, ie. they should make explicit onl y the semantically relevant properties

for which they are introduced, without the addition of implementative details. f'breover
whenever possible, we would like to follow a standard way in defining these structure (for
example in the cam of theeonvironant).t

3.1 Evirsamet

It should be clear from what maid i n the introduction, that the envi ronment represented i n this
eperatlonal model need net to reflect all the prope rties al ready stated from the static semonti c3
step. This means that the informal meaning of the "onvironmento is not a structure used to
represent the set of associations (between identifiers and entities) which are visible in a
certain instant, but rather a structure usad to maintain the neeed asociations in order to

model the execution of on Ada program (these associations may be more than the reall y visible
ones, provided that the resulting effect des not change)

B- 81



7F

Pope 22 ''

We think that the environment should include only those associations, between identifiers and

46 entities, introduced by the elaboration of (explicit or implicit) declarations. Objects

(Left-Ylues), vhich are not directly nmed by declaretions (e.g. subcompononts) should be

obtained by the application of basic operations (indexing, selection of components) over

composite objects.

In our model we would like to follow the standard style, where the environment is static outside

a declarative port, I.e. where a ociations cannot change as a side effect of statements.

It is not so obvious thet this is the most correct model for the environment in Ads, because of the

presence, of dynmic objects ( objects whoe internl structure may chenge as effect of

'statements) as is Ill gstratd I n the folloving example:

-- is an unconstrained variable whose type is R

A>> :. (3,(abc)); tpe R (N :integer:I I is

... record i

Y.TEXT(5) :- (d); TEXT :stnng(N),

-- it rais CONSTRAINT ERROR oui record;

<<B> V :- (5,(d,e,T,g,h)); Im

Y.TEXT(5) :();

-- it works succesfull.

It is not clear thet the denotation of V should be considered the same (at <A4) and <<B>>),
provided that the application of a selection and a subsequent indxing operetion on Y produce

different results (as Left-Yalues).

The problem arise essentiall y if we vent to consider the Information about the structure of as w

part of the denotation of Y.

Even assuming that dynomic objects do not create any problem, we are not allowed to consider all

the associations of the environment as constant ones. In fact, because of the two step

Introduction of entities (program units, task types, deferred cofe.nts, incomplete types,

recursive types) we must explicitly deal with updates of alrady introduced denotations in the

environment.

B- S2~~~~.................. ... .. " . . . ." "-," "'
.. . . . • -. . . S ... ..;.-. . .... . .,,, .. %-','.' 1'.. " . . ., ±. :', '. .". .r . -;.....,.,.,,,,# '''; " 'P . ... *,.$ * Y,"



Z of Aaa

Peg 23

This limited kind of dynemicity" however has a deeper influ nce, on the structure of the

environment, then one would expect; for example It does not allow to pas to each construct a-V

copy of its own environment, eviding in this way the existence of an explicitly shared

environment (as it usually hppens in the stadrd sequential cses) Problems, in this can,

result out of the combination of the mixing of concurrency and of the tvo step Introduction of

entities (as illustrated in the follovi nOg example).

- - vithin a declarative part

task ttpe T; -- an incomplete task type specification is introduced

packge PACK is ead PACK;

peckage bedl PACK is

teak INNER;

tak bedg INNER is -- a new task INNER (using that specification as a

type A i s $cas T; -- complete specification ) is then created A

REF :A;

REF :s -v T; INNER will activate a new instance of T

end T; .

b i n
mull; -- the task INNER is now activated (during the

*ad PACK; -- elaboration of the body of the package PACK)

task bed T Is ....e T; -- then the Initial specification of T is completed

In this example it happens that a task INNER, which has visibility of an incomplete specification

(T), proceeds in parallel with the elaboration of the rest of the declarative part. When the task

INNER activates the Instance REF.all of T, If the body of T has not bn ailready elaborated then a

PROGRAM ERROR exception should be raised, otherwise the task activation proceeds

successfully. This is an evident example that, when the task T is defined (or even activated) (in

our case INNER), it cannot receive a copy of the existing environment, becuse this

environment my still be updated.

In general, nme resolution (see the Overview) is not sufficient to uniquely identify the actual

entity denoted from an identifier at a certain point of the execution. This is a direct consequence

of the existence of recursive subprograms, of subprograms shored among tasks and of task

3-033



Fom,aj
3.411 tron
o- fA Ada

Pap 24

* types (each oe of the three case would be enough). So we nee some other kind of dyjnamic
information in order to identify, atea given paint of execution, the correct entity sted to an

* Identifier ( we shell call *envi ronment- selector' this information). We can observe that for
3*uenial languages, in which we are able to pass to each construct its proper environment, the
structure of the environment itself can he a simple napping from identifiers to denotations. I n
our case the environment is unique and shared; consequently it is more complex, for example it
mayj have the form of a nrapping:

(lscel -onvl ronmmt- selector x Identfier) -3 jamatetlem.

We can observe how, in our case, the local -env!ironment -slector plays the some role of the
environment for sequential languages (as value passed from a construct to another modelling
in an abstract way the present stack) .During te elaboration of each construct, the present
locl-enironment-selector should indeed record the position, in the "cactus Stack like"
structure of the global environment, corresponding to the present environment.

We do not discuss details about the structure of denotations In the environment, because it this is
still matter of more detailed modelling.

3.7 M~rf Strwrtwre

We recall that even in this case we should not give a particular implementation with a structure
as ctactus stacre or Ohsap* but rather vs should try to specify in an abstract way the
requi rements over the structure of the storage.

Inour uodel we suppose that the memory is a unique,ilobal and shared structure, containing all
the ssociations between objects and their values.

In a different model of memory vs might represent as global only the part of the memory
explicitly shared between several tasks, still representing a local information of a subsystem V
the local port of the memory of a sequential task. We do not like this solution becaus in Ada it is %

not easy to distinguish between the local end the shared part of the memory of a task (which
remains local until some inner tasks are activated).

The memory description, as it appears from the manual, it is not vary abstract because oftn it
refers to implementation dependent aspects of the langug.

34a



Draft
Fornal
Definition
of Ada V

Pap 25

tbrsover a rosily complete definition of MA should not avoid t.o dsribe (at least soeI of)
It,. implementation dependent features of Ade (for example the SIZE attributes or the
STORAGE-ERROR exception) though the description of these features should be done without any

losn of abstraction, for example by means of a parometerized specification. All these
i mplementation dependent aspects might be i ntrodue i n fact as parameterized aspets vithi n a
unique store specification (as ADT.

As for the overall structure Of this storage model, it should be seen essntiallyj as a mapping
from L-Val ues (Objects ) to L-Yal ues (Val ues ) as i n the standard case). As I n MA objects and

~ -:values can be composite, we can have that both L-valuos and LJalues nay be complex (for
example in the case of arrayj); in this case we should be able to get the L-Volue of a component
from the L-Yal ue of the whole object (and the same for the Values).
The correct correspondence between LVal ues and L-Yalues might be stated by formulas within
t storage specification, stating for example that the nOh component of a Lval ues
(corresponding to an array value) of a L-Yelue L should be equal to the L-Yalue of the nth
component of L.; i1e. if A is a Left-Yalue corresponding to an array, R the Rigth-Yalue"
function (which given a L-Value end a memory state returns the corresponding L-Yalue) and I
a Rigth-Yalue (R(A,m)) (I) R(A( I),m)

This issue has ben tretedin a more completevwayin aseparate report [Reggio 851.
In an even more abstract model ye could avoid to Introduce explicitly L..Yalues, directly
representing denotations as structured mcmplexg R..Yes In the environment, treating in en
axiomatic way problem about reaming and subcomponents. This last solution, even if

feasible, seems too much abstract with respect to the Me. manual (in vhich objects are

mentioned explicitly).

As alreay said the information about a task needed by mere then one task, which cannot be
obtained with a synchronized action, should be represented as global.

The information about task dependonme is just an important example. It might be represented
asctly as. retion betwn msters. This infornmtion siuld be global In order to modl in
a simple way statement like abort T, or other dependence driven (synchronized) actone (e.g.
Itirmlition).

Stt* attributes of a task, like atctivoted, 01arminated, "Iermietsbie' end so on, should be



global being obviously updated from the directly Implied tsk (actlivtion, termination), but

also used by the creator (Mhich is not neressarily the master) task (in order to vrify the m
termination of the activation of the created tasks), or used by other tasks ( rendezvous,

termination, obort etc. ).

All the information about queues end entries (e.g. for the representation of conditional entry

calls) should be global too.

A compete definitlon of these structures con only be completed during the formal definition, and

is Out of the scope of this report

B-.-8

.5.

B- 86 :



-~ Definition

Pape 27

R 4. 0 THE ATOMIIC ACTIONS PROBLEMIS

A formal definition of t* concept of "atomic action"of S took can be given only In the framework S

of a fully mathematical model. I'dv~vr with reference toa mde bowe on labelled transition
system, we con think of on atomic action first as a labelled transition s3t the intermediate states
are not observable and homet not relevant to ts overall semantics of a program.

On the cont rary the beginni ng a nd the end of on atomic action mar k t he states I n w hi ch a tas k ca n
inleract with the system, interfering and/or being interfered.
The problem in Ads is that the beginning end the end of tn atomic action ore not given simply by
tie various synchronization points or by the beginning end the end of a concurrent action. Due
to the posibility of abortion, the case of shared variables and the obvious fact that the
evaluation of expressions can involve the execution of subprogram and tasks, even many
apparently sequential actions have to be split in more elementary actions in order to handle
properly the concurrent interaction among tasks.

A second, now methodological req uirement over the atomic actions is that their length should not
be longer than the execution of a single Ada statement (or declaration), provie that we are
interested i n a syntax di rected style in the descri ption of the semantics of the language.

But in general we have that the effects of on Ada statement are too complex for beting considered
as atomic end should be specified sas a st of possible sequences of atomic actions.
Even looki ng at the manual we can observe that the effects of a statement (or declaration) are i n
general described by a seqenc of smaller actions,; this Is obvious in the cose of compound
statements, but in general it happens so for "termlnalm statements (and declarations) too (e.g.
assignmnt,bor, ext, ).

For example, In the mae of on assignment, we have to evaluate an expression end a Rome in
order to proceed with the update, and beth the evaluations may involve (by means of function
Calls) an unlimited amount of activity. Then it seem reasonable, still from a methodological

point of view, to follow the style of the manual in the descri ption of the effects of a construct
(decomposing statements end declarations tn smaller pieces), at least I=j this description is
driven by the tyntactic structure of the constr wct.

On this ground, in the and atomic actions should rat be longer than the elaboration of a
"terminal" construct (eg. nmes, literals, basic operators,..

3-87



g7L - -r-or, al

Obviously, we still have to verify that it is correct to model such elaborations atomicslly, and

for doing this we need to state some kind of requirements over the observable behaviour of these

elaborations.
Arm

Whet we require from such elaborations, in order to be allowed to be considered atomic actions,
is that they should not have observable *intermediate states' (in the sense that their

intermediate states should not influence the behaviour of the rest of the system nor should be

Influenced by it). Non-atomic elaborations should be split agin, until atomic actions are

found.

We can observe that in some cses the mentioned elaborations ore still too complex for being
modelled as atomic. Indeed the concrete syntax of Ada sometimes hides long squnces of
elaborations possibly having the some complexity of the whole program.

With our requirements, sport from some hiding" constructs, most of the elaborations

corresponding to "terminal" constructs, seems to be atomic. In fact the granularity of these

actions alreedy solves the problems of synchronization points or concurrent Interactions.

The possibility of becoming abnormal, end hence completed prematurely, might influence the

atomicity of an action; however though an abort statement can interrupt the execution of an

action, it should not mke oervable the "Intermediate states" of the action itself.
An interesting example of interference of the abort statement with an atomic action is illustrated

by the update action. Indeed when a task becomes completed while updating a variable, it is
specified from the manual that the value of the variable becomes "undefined'. This explicit

remark of the manual allows us to consider as atomic the update action (even In the case of -

updates of structured variables like arrays), because the effects of the interaction of this
action with the rest of the system still does not depend on the set of the intermediate states

reached by the action itself (even if it depends on the behaviour of the rest of the system) (the

situation would have been completely different if some "pertial updte" might have occurred).

The situation is not so clear for many other actions ; for example it is not clear what might
happen If an abort statement is itself prematurely abandoned becausle of another abort statement

(might only a subset ofthe required tasks to become abnormal?).

Another issue is that some of these elaboratione corresponding to "terminal onstruct' might in
general not be observable (for example the evaluation of a single name) end might be "pecked"

with other actions.
.'.._...% . .'. .; .... :, ,..' ,,,..','...r,,' .' ' .... , :. , . '.,.; ;.,'..: ... , .. :, .,'. ... .'. .:..,.... .'..,.',o.



Formal

-of Adan

Pop 29 .

5.0 OTHER ISSUES

5.1 EvP/il TiA

A complete definition of Ads should describe all the time-dependent features of the language.
rz: These features ore related to the existence of a predefined "ALENDAR" package, anid to the

exi stnce of ex pl ici tly ti med statemne nts. 4

Some more sophisticated problems are related to the duration of other (not explicitly timed)
statements.

The CALENDAR package provides a CLOCK function returning the actual value of the time (see
IRM 9.6 (7) ); obviously this is an implementation dependent feature and should be treated in
a parametric way.
It seems rasnable that subsequent invocations of this function return increasing values of
time; but this is not explicitly stated in the LRM. %"

Our approah can accomodate any of the official interpretation that con be taken in some future.

The effect of a single delay statement can be observable within a program, as it is ill ustrated by ''

the following program fragment:

t :CLOCK;

deleg (ni);
newt :-CLOCK; '

the value of newt should be at leastt n .

We must note that in the CALENDAR package appropriate 4.and N' functions are defined,
aloigto sum a TIME value (returned from the CLOCK function) with a DURATION value

(possibly used as parimeter in a delay statement) and allowing to compare two different TIME
* values.

Anogously the effect, of a delay alter native within a timed acept statement Is observable, as it
is Illustrated by the following program fragment:

B- 9q



SD..L'''on

Pape 30

'' .

t := CLOCK;

select

accept E

or dolol (n); t' :- CLOCK; ,-

@ad select;.

the value of t, if the delay alternetive is executed, should be at least t. n.

Nevertheless we are avere that this is 8 particular Interpretation of the manuel, which reall u
ss nothing about the semantics of time; aote however that the above interpretation is

supported by the existence of sme AYC tests checking for the verification of the illustrated

properties. V

We believe that a formal trestement of the timed constructs should take into account these -A

intuitive properties, for example modelling explicitly the current value of time.

S5. 2 Par*.I, IsAF
-"

We must observe that the LRM clearly states that an implementation is allowed to perform

contemporaneously any group of eligible (nonexclusive) actions ( 9.0 (2) ).

Moreover it is said that the duration (relative speed) of the actions is not specified ( 1.1.1

(12) )

Thus if it was not for the presence of constructs vith an explicit reference to the priority
feature, we con model a parallel execution by allowing, at each execution state of the system, any

group of eligible actions to be performed in parallel. In a SMoLCS model this is dealt with by

defining a free-parellel monitoring (see (Astesiono et el. 85 b for an example).

Introducing priorities implies that at monitoring level we have soma monitoring information

related to task priorities and that parallelism is free except that for priority constraints.

However the only constraint that the language seems to state Is related to the behwour of a

selective accept statement, vhen tasks with different priorities are queued (and hence eligible

for ax a,,ton if the corresponding entry is cepted) on different open entries.

B-99



Dratl
Form"
Definition
ot Ada

Par. 31

5. 3 / lsnflab ' Aipti

The i mplementtation dependent aspects of Ads are of very different kinds.
Some of them ore not explicitly implementation dependent features, in the sense that an

implementation is not required to give an accurate description of them in son* 0appendix" of the
manual, arnd are treated in the language as explicit forms of nan-determimam (which an
implementation is allowed to restrict, but which a program is foot allowed to test). Notorious
examples of this kind of 'implementation dependent" aspects are the orders of elaboration of

* some constructs, the techniques for perameter passing, and so on. In these c seven if an
implementation is allowed to restrict the allowed nan-determinism, a formal specification could
not avoid to describe all the possible alternatives.

A similar example of the above mentioned nondetermism of the language Is related to the
concur rent aspects, each implementation can provides a rticular scheduler, monitoring in its
own wig the relative speeds of tasks, anid competitions in rendezvous. In this case a program is
abe to detect the implementation choices ( at least in part),ewen if a formal specification could
not avoid to describe all the possible alternatives in order to define the correctness or the
uncorrectness of a program.

A completely different kind of implementation dependent aspects of the language are, on the
converse, those aspets which should be explicitly descrie aend fixed In some appendix. For

p ~example the definition of the type PRIORITY, DURATION, the values MEMORY-.SIZE, M'~INT, the
set of predefined numeric types, and so on. Thene aspects perhaps should be treated in a
paramtric way in the formal definition, because their non-determinism is nat dynamic but

fixed "a priori".

Another very different kind of Implementation dependent features is related to the use of
*low-level facilities of Ads , eg. association of entries with external interrupts, use of mechi ne

ade Insertion, mapping of objects at explicit ADDRESS values end so on. ( It is nat sure that
this aspets should be modelled ,and how). Thene aspects are nat very ineresting to be modelled
in the formal definition.

A more precise report on these Issues (Including I/0 problems) is still In preperation (e
IVantechietal. Jformnaredetails).

B- 91



Pop. 32

6. 0 CONCLUSION

The motivations of the choice of a model have ben illustrated. In particular the advantages of a 0
flat (31 ngle level ) structure are explained.

Some hints on the troatement of timfed constructs and other implemfentation dependent aspects of
dahave been given.

B- 92

. .



q- 7-- ?-.-2 7

Z ratt
Format
ot Ada

Paq. 33

7. 0 REFERENCES

I[stesiano 841 ASTESIANO,E. Combining an Operational With on Algebraic Apprah to the
Specification of Concurrency. To appear in Prx. Wrspn~bnr *i
(Nijborg, Denmrk, 1984), also in Crmt report n. 12?, December 1984.

[Blumn 84) BLUM,K. An Abstract System Mede) of Ads Senmntics.TRW Reodo Beach CA,
August 1984.

(Asieno .t 01. 65. 1 AST1ESIAND,[. MASCARIG. REIGIOG. AND WIRSING,M. On the
paraeterized algebraic spcification of concurrent systerwit. &A'5-1;*jfxfn

cvr*rxr, Berlin, Spri fgr LNCS 185, I'hrch 1985.

(A.tesiono et 01. IDS b ) ASTESIANDE. AND REGGJOG. A Syntax-directed approach toth
smntics of co cur re nt long uss .Prel imlinor y repo r, M y~ 1985 .

[Plotkin 811 PLOTKIN ,G. Astructural approah toopertiom1 semntics Lecture note3,Asrhus
University, 1981.

( Berryj 71 MBERRY, D.M. Introduction to Oregno, /ro. ACM ANSU#4mp. - 0** frtv.re

h4M'P#rW #V Unw4I s, Gel nev I I , Il a. Fe b. 19 71.

1~ohnston 711 JOHNSTON, J.B. The Contour Model of Block Strutured Praee, Prat. ACA~
WA'$#Mp. - IW now#~s*dPWP~pUAA ,GlrylIe . F eb. 19 7 1.

M~orner et 0l. SOl BJDRNER,D. AND OESTAON. Towards a formal definition of Ada LNCS 98,
Springer 1980.

IDwer at a). 831 DEWAR, R. FROELICH ,R.M . FISHERGA. AND KRUICHTEN,P. An executable
semntic rmdel for Ada, AdsEd interpreter Ada Project, Courant Institute, NYU 1983.

IRqqio 851 REGGIOC. A proposal for on abstract storage nwdal Working ppr Ada-FD,
April 1 985.

(fantechi at l. IFANTECHI A. AND MAUZANTIF, Notes on thm implermntation dependent

L- 93



of ~ AoaU

* P9 34

features Working paper Ado-D, in prepartion.

JI)

3-()4

7

dU



-- ~ ~~ I. P --

The Draft Foml Definiotion of Ada®w
Comissonof the Europan Communitis Multi-AnnualPrgam

FORMAL SPECIFICATION AND DEVELOPMENT OF AN ADA COMPILER-

A VDM CASE STUDY

Geert B. Cleinmensen

Ole N. Oest

* December 1983

*Ad@a amgw~od edefwp.w .. U. a~wr n (Ad Jont Prem0%w



o&
PREVIOUS PAGE

IS BLANK"."

FM4IL SPEIFICATION AND DEV Opv'r OF AN * COda ILER

-A VDM CASE SWlDY

Geert B. Clemnensen and Ole N. Oest

Dansk Dataratik Center
DK-2800 Lynrby

Derrnark

of the IBM Vienna Group, namely the specification
7eVienna Development Method (VDM) has been language VOL, in which PL/I was specified in the .

mqployed by Dwsk Datamatik Center (DDC:) on a late 1960's. and which relies on operational•-.
large-scale. industrial Ada compiler development seatis •D uss--et'xga nwna

project. VD is a formal specification and devel- "L'rA-IM' [2) based an sugared larbda calculus r4-
omwnt method In that it insists on the initial and ScottStrachey domin theory [151. But VD is -":

specifications and all design steps being express- rore than just a ueta-language. a number of aeneraled In a formal (matemtically based) notation. approaches developed elsewhere has been incorpor- :'

ated into VIo., most notably stepise refinement

This paper gives an overview of bow VDM was used of functions as well as of data objects.

in the various steps of the Ada project, a further contains a nwber of specialized
we quide the reader through the steps involved approaches: in the area of programning language
from the initial formal specification of Ada down definition and cmniler development VD offers a
to the actually oded multipass ompiler. Finally specific set of guidelines thought of as a

we report on the quantitative and qualitative "cookbook" prescription for the wrk to be carried

experiences we have gained, both as regards the out [3]. As a part of reporting on our experiences,
technical suitability of Vj for the project and this paper explains hich deviations from the

as regards the inplications on software manageent "cookbook" we had to make, and hy.

and quality assurance.
Generally software development proceeds as followsw/hen using VIOM:

1. Introduction A specification of the software to be developed

This section gives an overview of the Vienna is given in the form of a model. that is as
Developrnt Method (VDM) including its application operations (functions) on objects representing

in empiler development (subsection 1.1) and of the the input to and the internal state of the

WC Ada ompiler Project (subsection 1.2). Then software, and yielding objects corresponding to

section 2 describes how VDM was actually erployed the output and the changed internal state. .he

an the MC Ada project taking into account the nodel is formal in the sense that it is expressed

practical restrictions, -ai- steImwing fro the entirely inh meta-language, and it is abstract
kind of host and target oaIputers, others stemnmn in the sense that it is free from details "-

fran the changing environment (three Ada inguage ccerning the eventual inplmentation (functions
Manuals ware issuedAduri h p . are often defined inplicitely rather than via an .' %

eer erei the -, algorithm, and the actual representation of the .'.-

Section 3 exanplifies the application of VDM in objects is not onsidered at all. bjects can be

the developmnt of the code generator, and finally abstract (e.g. recursively defined sets and

section 4 reports on the experiences gained with mappings) with no counterpart in the Itplementa-
.tin language). Classes of the objects involved

(domains) are explicitly defined by so-called
domain equations raitethan ipplicitly defined

1.1 The Vienna evelopmnt Mto (e.g. by axim)...

The Vienna K~velopiant Ibthod was initially Then a series of more and more concrete specifi-

developed at the IBM Laboratory at Vienna in the cations (called "designs") are worked out. Each
early 1970's for the purposes of the definition of design Is derived from the preceding. more e'.

a large subset of PL/I [1]. and the subsequent abstract specification in that either the objects, %

devalopmn. of the corresponding ccrpiler. VD4I or the operatiors, or b are arefined" into
dehof ational sunantior, correspormling objects and operations wore close

and should not be confused with the earlier work to the final iplementatlon, All specifications
are expressed in the meta-language, and the

aooncrete they become the wore Inplieantation• . ") a registered tradem ark of the U.S. ..-
Gmernent, Ada Joint Progu'a Office details will be dealt with. Ideally the derivation

of a more crnete specification is done formally

3-97 1983-12-31

_-.* ..- ,.

,o , ,/ .- o . - ., ,. '. * • • ". -. -• % % -. o -. .. • . - ....- . -. • o -o . . . - o. . °. . - iv .° .



by riingfuctonstht generates" h - -k "W1W ~ etsa-language" rahe than acua cotie .

* level objects. or by writing the so-called allows for experiwents with the actual ru. tire
* retrieve fwactions which~. given the ob~jects of a systan ad inistration Weore details of the

certain level. *retriees" the correspondnq actual caie Is considered. S
objects of the higher level. It meat then - In

* either case - based on these functions, be proved
or argued that the derivation of the oprations 1.2 the MAa C'rpiler Proiect
are oroect In practice, a less forwo. tra&n-Mor-
w atien from one level to the newt takes place. thnsk DtamYtik Center (WC) is involved in the
ef.- section 3. and as generally discussed In [123. develorlnent of an Ada compiler as a part o! the
In certain application areas overall guidelines Portable Ada Programing Systen (PAPS) proitect.
exist for the derivation of designs: hoever, The PAPS project is being carried out by Olivetti.
vamst of the derivations one has to carry out are Italy. Dansk atmtik enter ani Christian
based an experience and skill. As regard& the Ravsing A/s. Dernork. and will result in a progm--
transfornation of objects (e.g. mWipings Into Ying onvi. euin a.Initially basted an and taroeted
tables). various standard exanples exist. Refer for two 16 bit mini-coiters. nanely the Olivetti

* tI). M'40 and the Christian hPvsing CRB8). The project
includes a kernel o"rating syston for Ada,

VEM In oo'piler develepront proceeds as follows various tools, an Ada coipiler. and a hich level
sechine for MA. The project Is partially funded

the departure point Is a ferns] definition by the Euzropean Conrunity.
preferably in the denotational serantics style of
the language to be minpiled. The use of a for,'al The boat and target canputers in question have M

* definition of Ada as the basis for cmpS Ir isposed a fliber of restrictions on the project.
* construction is also advocated In (73. Such a the Past severe being that the ompiler shw.ld

5-definition bas three coponents In the case of fit within 8O K bytes of code and 110 K bytes of
Ad a : A definition of the static siafntics (SS). data space. TIbis has Influenced the desicr of the
a definition of the dynamc semantics of th ooipiler considerablys A multi-pass cmpi laion
sequential constructs MSS) and a description of technique has been dosen. with a total of 6
the itynunic semantics, of the parallel (tasking) posses. and the tree-structured interwediate texts
constracta (MT). are linearized and scanned sequentially by each

pass. The cmplete trees are thus not residing in
1 he static smriantics takes as "Irput" an Mda Internjal sacy: the synbol table, horever. is
mi~pilation unit represented in an abstract placed In a softwre paged noreory. adrdnistered
syn~tax ASI. The S checks the corrrectness of th.e by the cmpiler Itself.
mite wad transforma It Into another abstract

*syntax. AS?. In AS? all information which Is only This design had eels inylications; on the way V~m
relevant for the static semanics has bee removed. ould be used on the project.

The forfulae of the dynamic senmtics assigns J
Offmanng" to the conpilation wAit represented as 2. ftploinmt of VEM an the WC Mda Proiect

* A? ojecs. ft goal of the MCA project is the fwlcpment

£81 and AS? are based on an abstraction of th of a portable Mda oniler written in (a subset :
wacet syntax of the language being defined, as of) A Itself. UHmce. a botstrap tool is

is also0 the IUAMP intermeiate language for required. This tool. WAiih is a source to source
MAs 13. translator seping Me onto a andium level language

5~~002-. was also developed using V04. This tool,
The front ad onipilier Is derived fron the static called kr-Mad (Sue m ngage Conversion of Ada).
surwaltis. and the beck end ampi ler (code gonera- was inplevented In Pacal.
tar) Is derived izon the dynanic sariantics for the
sequential cnstructs. The dynamic samanics for The two parts of the project, the devlaient of
tasking contitutes the departure point for the MC-Ada and of the Mda inpiller. are treated
tasking kernel in the run tim "ytam. separately, as they hove quite different diaracte-

ristis
AN and A52 will thus have their onterparts as
intersaidiate languages In the mirpiler inpiementa- The developeni of the ELC-Mad traslator ould be . .1
ticn. As the U andM specifications will have considered as an Internal effort of modest size.
to be split onto several Passes. mwe intermediate RUttle interaction with grups outside the M

a'languages will flarge during the design process. was nee x and the Mda subset cosen was
The specification of the code generator Is called stable Awing (and to a large extent after) the
a wapV~ly algaritus (CA). w it shw hc develop -is Phase so thi sub-prject could be
eade to gaeeate for each costuact MnAa (A2) mnged with lit, Is effort and It could be carried

out by a mllI group at 3 to 4 parsons. T hisa
2deallY a Mcro eMMJacn step between the Ws iwplified the Internal cmuicaiotion in the
and Ck should be taken T he mca step generates group. The sib-project was carried out In a

little less than cne year calandar tire.-

-M % -e 4OfA S%



-~- WT... - -. 0 -V -7 -..-. V% -W - -

Ithe development of the Ada compiler. however, was separate passes. 7his was done without introducin:
a large scale effort involving 10 to 14 persons different intermediate languages. All passes
over a three year period, and involving interna- (except the scanner/parser) work on the sa-e
ticnal cvoperation on interfaces within the intermediate languaqe (and repeats certain
coipiler as well as between the compiler and the operations). 7Te mechanisms for the separate
environment. Further the Ada laruage fluctuated compilation, the scanner/parser, the run timequite heavily during the project period (probably system and the Asda linker were developed by _ .

U as seen from th average user of Ada). Not only .
did we see three Issues of the Ada reference--'

manual during the project, but we also saw 2.2 The Ada Ctipiler
inbetween these issues various - mutually and
internally inconsistent -'interpretations of the The development proceeded in this case throuih
Ada reference manual (the Softech IMplenentor's four steps:
guide, the Ada Ouestion/Answer mechanism on the
AiRPA-net). This influenced the project to a large 1: Development of a formal specification of Ada.
extent, and inplied a rather pragnatic use of The static seantics and the sequential part
VDM, as the goal of the project was to cone out of the dynamic seantics are specified in the
with an up-to-date compiler, rather than to denotational senantics style, whereas tasking
maintain a coherent set of formulae through all is specified by an operational model [8].
d development steps. On the other hand, the [9, (103, 11].
obligations to the "outside world" reguired that
a high and consistent level of documentation had 2: Development of a formal specification of the
to be maintained. Thus a careful balance had to capiler parts.
be made.

3: Dvelopment of a more detailed formal specifi-
It should be mentioned here that we had no tools cation of certain compiler compoents an
available to support the development of the passes.
formal specifications, to check their :snsistenceT's e
or to help in the refiniment steps. VDM was (and 4: Ihe Ada program structure is decided upon- 4'.
still is) a paper and pencil method although the specifications are broken into Ada
steps are being taken now to develop suport packages, and implemented in Ada.
tools.

Application of steps 2 and 3 to tha .rcnt end
apiler involved:

SLC-M& N
step 2:

The subset was chosen according to experience
with earlier program and compiler development. - identifying item governing the or prp" of
The guiding factors ware: static checks (dependence on coipletaaess of

symbol table contents, on degree o ^er-
1) the Ada subset was to be used as implementa- loading resolution, on evaluatic. ,f.t., .

tLion language for a 100.000 lines project, expressions etc.),

2) straightforward iplementability of the - classification of the static checks (bssW, 3P
selected features. the formal specification of Ada and on the

TesacsaItst identified above),
"he static semantics of the subset was described
in IETA-IV, and the dynamic semantics was - distributing the static checks to the passes
described by giving a compiling algorithr mapping based on a topological sorting of the checks,
the subset into SWELL. As a parallel effort

'. outside the PAPS project a formal description - formal specification of the passes and
(static and dynamic semantics) of SWEL was worked interumediate languages,
Cut. The formal description of the subset was
intended to form the formsl specification of the - defining the intermediate languages between
CMPiler and was hence written with some thoughts the passes of the front end.
about implementation issues.

- specifying for each pass the transformation
Trhe translator was coded by a rather direct, fran the input intermediate language to the

vmrl transformtion or rewriting of the static output intermediate language,
semantics anod the compiling algorithm in Pascal.
This resulted (in addition to the scanner/parser) - specifying a syntol table handler.
in en. pass handling the static semantics, and
a'. pass performing the source translation. De stp 3t 0
to umary restrictions it later became necessary
to split the static semantics pass into three - for sme parts derivation of a more irple-enta-tion oriented specification. for the remaining

parts the formulae of step 2 apply.

B,UB- 99



II

Ite static seantics part of the formal descrip- 3. A VD, Exerc!se
tion of Mla has some res-blance witY a am pass Ad e tr
oupailer. No formal mthods exist to derive a As described elsouftre in this paper. V1. is

specification of a wu]tJ-pss compiler front end based on an Initial formsl specification onto

from such a definition. MP~vwr, by auiloying which a sequence of refimnent ste are applied

systemcy as described under step 2, we obtained in order to reach the final implementation. In

a opiler front end specification which turned this section. the reader Is guided ore or less

out to be of a wry high standard: It contained informally through an exercise in W. by suo.-ing

rather few errors, and they were all easy to how the dynamic semantics of a specific Ada

corect. boever. as step I (and later 2) became construct is specified, refined and iuplaeented 4*

obsolete with the new issues of the Ada lagnquae (in a subset of Ada).

reference renual, the specification of step 3 was
updated, proof-read ans comqpared directly with To introduce som of the terms used in the fol-

the text of the new manual . For each formula in lowing, the compiler structure is shown

the specification. the corresponding test of the
eanual was marked with the number of the compiler Ada -) Pront Ed -) I4K -b BSack Ed -) A-code

pass. %tich handled that text. Finally it was
checked that all of the manual had been marked Within the back end the following structure exists:

up, and necessary changes to the formulae were
carried out. IL-sPass 6-)IIL7-3Pass 7-3AA-code-)Pass S-)A-code -'

Application of steps 2 a"d 3 to the back end lK,6 is a trot structured Intermediate lanmage

c ompiler involved: %fch i s comprable to DIVA [13) in level, but
compacted and sinplified. MlL7 is also a tree

step 2: structured Intermwdiate language, bit is aimed at
code generation for any class of target machine.

formal specification of an "overall" compiling A-code is the code for a virtual stack machine

al.orithrn mapping the output of the front and called the A-mchine 16). Abstract A-code
directly into the A-code instruction set of (AA-code) is a suitable abstraction of A-cede

the high level tar.et machine [6). Note, that %€ih ases the oe generation, that takes place

the intermediate language between the front in vess 7. and mes it possible to dse among

end and the back eMd steS fro AS2: hence it different Implmentations of the A-machine.

had only to be refined in steps 2 and 3. not to
be defined. The Ads construct used as an exorple is the

object declartion (14 section 3.2) t

step)3:
object dea.ration::

- based upon this: decision on intermediate ientiTier list ( !ouantj subtype indication

llrus e levels and structure. ....- 
p ss on 

.3

- forum) specification of the resulting three subtyhpeindication ::- tyjp _"k contraint-)

bok end passes and two inteumsdiate laniuages.
As sonticd earlier, the formal specification of

The back and develoitent is exaplified in section Ada has two main components. namely the Static

3. The specification of step 2 a is based and Dyrudc Uemant.ics. An abstract syntax of Ada,

on step I and the informally described changes of called MlS. form the lnput to the Static Samn-

Ada, %Wich took place during the development of tics utdch also contarn i transfowmr producing

step 2. stop 3 was developed in a similar way. the a -bsct syntax of the DnaMic S antics.

Wly the step 3 definitions are mintainsd up to called AS2. Zn AS2 the cnstruct is modelled as

date with respect to the current ds definition. follow I

7he scannerfparser and the separate compilation Object-daZ Var-id-set [CNS 3Subtype-df mzp,r )

bundler were developed using traditional e . Vav%-id : OZEE - - I
Subtjyp-def: Tpe-.urk (ConatrJ

in crder to ebtain intermSdiate milestones. f
ispls.ntation levels were defined were eSCh lbtict lahW clse the d aisn specification is to

evel Upl mnts Yore and more of AS. This t original A syntx ivien above.

division into levels s dane based m the formal I
specification. and largely only after the

, avelop.ent of all of the specifications. ach"
level bs been tested thoroughly, both by the
original developers and by an independent grou.

B 1

B.-lOC r

............- .. . . ,. .... . '.. .. ,-. . ,.. .-.. ...- .. ,.,,. '. ... ;.- ,.. - - ', " ' -



The elaboration of an Obect-dc can now be In our mnrierentation %m have decided to 9-formally specified as - distinc ish hewPten the foloring object kin.s :

eZab-Object-dcZ(dccZ~env - array
- record

Zet mk-Object-dZ (vide, oet, st-dtf, ie.pr)dec Z in - task
Tde at : eZab-Subtpe-deff(t-def)env; -access
-Tnt = CST - - remaining and sinle objects

er-a* Const-doZ (vide, at, iezpr)env,
T - In the folloino we will concentrate on the si-ple

eZa Var-deZ (rids, at, iczpr)env)) objects.

!_ae: Object-dcZ -3 (ExV -i EV)
'.e: he elaboration of the subtype definition In order to get some hints on how to direct the

has no side effects refinerent and irp]ementation process it was %
decided to work out an experimental refine-ent
step, transforming AS2 directly to pseido A-code.eZab-VaY-dc (vids, at, iezp)env -1"mLs so-called compi ling algorithm sketch res ;]ted

-nong other things in the notion of predicates.
(def vaenv : get-varden(vide, at)env; Predicates are truth values attached to the

or aTrZp i - nil - various nodes of IML.7 and they express certain .:J,for a RZ '-d -vide do properties about the sons of the nodes (i .e. they
"--Tdeil : get-ig' t-VAL(at)(CREATE) env; guide the code generation).' ~~~s-ig (s -Va rLoc ( arenv (vid) ) ,-r"-.2=) ;

return(vawen)), The actual refinement steps can now be qiven

S-AS2 -> IKL,6 :This refinement step is a step in
fo. aZZ vid c vide do the design process and is not implemented, it

TdiTimaZ : evaZ-apr(iezpr)(env*uarenv); merely consists of a concretization of AS2 into
au.i p-heck(ivawZ,et)env; I6. The step is called a domain refinement. ,%assign (# -VarLoc iva,.env ( vid) ), ivaZ ));.' J

return(vaiJv)) IML6 -) IK. - In this refinerent step the various"
objects (also types. subprograms, operators etc.)

tpe: Va-id-set Subtype-den ( Epr] -, (ENV =) ENV) are classified into the appropriate kinds and
predicates are evaluated. Essentially this refl-
nement step is also a domain refinement, although

The elaboration of an Object-daZ consists of not normally covered by the term domain refinem-ent.elaboration of the subtype definition (yielding a The step is inplemented as pass 6.
so-called subtype denotation) and a new local
enviromet (elab-Cont-dol or eZab-Var-da ) in iM., -, Abstract A-code : In this refinement step
wahich the objects are introduced. the high level tree structured intermediate

language I" is transformed to a linearizedThe elaboration of a Var-dal consists of creation sequence of Abstract A-code instructions. Itisof a local envirunment in wtidh the objects are step is the operation refinement step, and is
Introduced and the evaluation and assignment of Implemented as pass 7.
either implicit or explicit initialization
expressions. Abstract A-code -, A-ode : 1his last refirment ,,

step takes the Abstract A-code and produces theCrw important issue of the specification given final A-code. The step can be viewed as a post
above is that all kinds of objects (arrays. tasks, drain refinement step %Aich concretizes the

41 simple) are treated wi formly vhich compacts the domains of the Abstract A-code.
specificatin and eases the reading considerably.

Becuse of the rather voluminous specificationsWhen the formal specification fron the Dynmic of all the refinement steps, the previous exarple
Seantics is to be refined (including both domain will only be slom specified in the refinement
ad operation refinements) into a so-cal led conp- step Il -I Abstract A-code.
iling algorithm (code generator) specification,
a number of ijnortant issues must be addressed in In Ii the previous exa.ple is modelled as : ',

order to guide the refinement process.

SlaplaObjectDoct OBJECT-IND ObjldlExamples are , [SpZsConat"J (r"

how to inplmnent the various kinds of objects O&7ECI-LIND ..t.. .I g
eliminatio of checks iduere possible Ob.*d1 ren:Ti DESCR-ADDR.

- optimizat.ion of repeated expression evaluation

%S

e - t
5.

M a e . * ' W .~.% ~b t '.



Predncates t Sw rizing the steps involved I

S.FTO e st-tatieowds Exp'-oSideEffects 1) A suitable high level abstract syntax of M,Sv'$, Ze.onsts-.oo~ejev. m,'ik zpr-NoSabtdp.,ihck AS2. Is defined and the dyna-ic sen~tscs isSi9ZconpaSt-NoZppcr.Neck Ezpr-NoLowevCheck formally specfLied*, $5pZeont-A'0'otuZZfia~ne .pv-loppCi.hek 2) AS2 is refined into IL 7 using so-called ,

domain refi mnwantsThe Va,-id-set of AS2 has now been converted to 3) The Dynaffdc Serantlcs is refined into aa list of oE3ecot identifiers Which essentially is CorToiling Algorithm. using so-called orvrationa list of sywrl table references. Predicates. refinementsexpressing properties about the constraint and 4) The ompiling Alcioritlr, As iIpl'ented
the initialization expression, are also evaluated

4 and made available. FRAimentary amotatlons to the formula

The e:ab-Vav-dcZ elaboration procedure 05-0 : If a constraint is given it is criledbecome a so-called Oompili n Algorithm formula and and storaoe is claimed and associated to theis namd C-Si -p&*Oe16jet,7ecZ (shoom below). Co- synbol table handle to. The evaluated pre-4icatesstants are treated no different than variables in are fetched and used for generating the optimalthis imp]larentation, but other impleentations code for the constraint.
.. ray chcuose different refirmTent directions and

hence a different conpiling algorithn and imple- 32-26 : If no Initialization expression is given,mentation. storage Is allocated and the associated addresses"It should be noted how close the coopiling alqorithm are stored in the symbol table (Nia the DZSCA-,;.. s).formula is to e*2-3bj-c and eab-Va-del, If storage allocation is to be done by pushes, thebut It is also clear that the €ompiling algorithm stack pointer is Incremented resulting in udefineodformula is more or less straightforward to implement initialization values.
compared to the elaboration formulas of the
dynamic semantics. The actual inylemuntation of 18-6 : The storage address of the constraintthe capilin, algorithm formula, In a subset of Ada, descriptor is extracted from the syftol tatle andis shown or the page follo.ing the formula. the initialization expression is evaluated the

required number of times and checked against the
" atraint. before assigned.

02 C-Simpl*Obje.tDecZ(amdec)Z -
02 Ze: mcS PZeObiect ecZrobjlcnd bjizocomuso.q, deZ in
03 Te~i m-bjJd( Ze.,d2 - obidl in
04 Zeti a- STYPE-ADDR~dal(J.7J in-~
0"c -oconF,.',,iZ .- I.06 C-Sipreona:r(m, ocon tP, ta, objlid,
07 Sipe-uv-tteoneel),

30 S1~pZa ontw-.Pol~opv"heckfdacl,) "2

32 (oeq-niz -3"
3 4 Z-add. - gez-Obj-ad,(obJkind) in
24 " "" rt-..obj.cdrd(daZ[iJtaddr) jT t i t Zen *
35
25 (on a XIEDZA2T - AZZoe on stack(en * _ise-objind))),

3D let a - .z~tv'c:-oniatr-ddrqgaJ in
31 -(Ezp-NoSideEffect(declj -*20

23
22 (NEWpw-oub:jp.~7ek(d~eZJ ---
23 Cek _"#e (eobj i *a))

*' 16 " -

* 13 -'-aev t-obit-add g dal[ ijo et-addwj -. :

I ~1. 
,.4 - ,

B-102

so4 .* -3

• * " . " . • ., d. % -%' ' ' ' .% % "., " % ' . . * "



procedwre CSavle@Cbjec13@cl is0SimalConsrS1#ac!ouroc% bocloor a in?.troc(1M;

: boolvcr :9 m?;jVV()
xxwvlvConstr-cLoaerCheck :boclvar j@1_p?. rv:W;)

!axr.,doSsd*!ffectS: bochipr :* .?.pe(~
!a~r..J:b~yPOCPOCk :boclear :~ "l;tr~3)

Vccj obj~cec:.dscrrwbf : cojec~ac~l-cSi
ac cocescr :9 .oc-ob.-dscr(thpcccist~c-olo.sll.ioaicr, r)al
co :Co~c~refs;

begin
im' 11%;
If ais17 .not /a nil then

ZSiwc1&Censirr..,rCr'eck)

p. end If;

ja)',,;otcs(ael'.,:os);

if I'i?_neu a @%il then
;et..ndinsert.ebj~ecdrCobjkinc);

If LC-cI a 1Fv!r1hE then
epit c1(Sg-hkoCCnSlaCk, iidl)n* hizeet1(o."jkand));

ca5 ft :2 :c hlvple typeceth aCCiSS(od.otatypa, r)).ell .cofstraidr;

If !apr.hoSicOEfteCts then -

5 If net f!r~oSwan~yp*Check tlefl
* smltC5SaaCh0Ckrgn;e, otikinco ca);

end If;?

C.Asslgn~nitExvr Ccbjkana):
else I .Jlfor I in1.il.allen

loop
If I ). I then

end If; -

C.Eapr~cbjkind);f
If not Eapr.%cSbtVV*C1,ok then

east c!(OO Clock rarge, cbjktndo ca);
end If;

0_09S :6 wC.objdeCl.@Sscr(Sthaccess(Iell.cel(i), a));
q*1.ob.'.&dcr(objkiE, XOddO.Ol.b.ddr);-f

if &C~sr a cf!ERaEc then
qmit.cS(ee.Pop, ebikinde P.odd.l..tjocar);

end If;
end loop;?

end 1i;
and If;

end C.SImglO^.4ctcqcl;

B- 103

1k *b e*j~.d ~~. ~



4. Exerience Gained Qm~xxient lbrmula Source Hor

Section 4.1 presents scime quantitative oberve- ____ ie ie
ticns as regards thie SL-MAs sub-project and the
rain Ada corpilor project. Section 4.2 contains Separate Owilation
saws techniical experience imetly concern~ing the Hlandler, ljti Pass
deviations from Ostrict" VKIM. and section 4.3 Administrator. Suprting
contains our experience as seen from a softwa~re Packages 43OC(C 2700
asnaqwent point of vie.

Misc.(SLC-Ada. other
tools) 2700 66XYV) 42DO

4.1 O~mrititative Observations
User Documentation 400

M-Ma Sub-Proiect Functional Test by ON
staff *0~. 7000 950) -

Comioent lormula Source Hours
lines lines Other Uk Work IF15O

*Scanner and Parser 32Cn0 472 Ovrea-)11-0

46700 230OcM 43700
static Sematics and
PIont Did 1400 11500 1365 I)t-is Includes: PHLage-iwnt. Meetings with

partners and other irlaretars. conferences,
apilirq Algorithum and work In Ada D=Wqe on language review and
Code Generator 1300 6700 1285 standardisation. caqpjer operation.

*Misc. (Library "Ytem, 44) As the official Ada 0miler Validation
Linker. fRn Time Systan. Capability test suite was used we hal only to
Utilities) 0500 368 develop a few test programs.

Punctio"1 Test by CA Staff 3400 178 m.e figures ato Inld the develqp2et of the
foll*Aingj documrents. totalling 200 pages not

User ~Comentation -7 - including the formiula*: rauiruwets specification,
*~~~ fctoaspcification, global deuign, detailed

*ITaW 270W 33300 3735 design Including Internediato lanquages; and. symbol
table. externally available interfaces,* test
tSpcits. VParther is Included feasibility studies

These figures include the design of the Ada ouset of Intermediate languages tmed elseWAire, progress -

aid the 6ew@]CMnt of the fbl&Adng infcawal metings, review weetings. All figures are
doewents: Design Specification (44 pages). aproximste. as the project Is not ampleted at
Wnorl Progru, Specification (39 pages) and the time of writing.
User's Dade (0 pops).-

-- The Initial estwete wats 32,000 person hours. and
The Initial etimate was 1060 person hiours The th~at around 100. DOD lines of coe had to be
onjor reason for the ovrrun~ was that the deelpe (excluding the S.C-Aa systam). T he

CIP101ity Of the Ads subset. was wuderestiMted. - reasos for the ov~rn hasn't been completely
Wntially it was considered to be of the analyzed, but m'aiq the reasons are: The Ada

Ca'plouity of Pascal.- language diangd during the project. the
emiplexity was higher than estimated, the *

dkmws too place an now hardware and on a
MA Cpiler Project pre-release of a nw operating system.

amponent Pbmula Souce 1burs
lines lines 4.2 Tedvhdcal ~pRMIui

wt~~aticW section cp wer reents the areas %Amr we had to
Statc Santic. Sanne. deiatetra 'haric V Mo. Howvr. It should be

Pase and Pfrnt Sol 24000 5500 12400 noted that VCM usners awe prog tic rather than~
do'ntie. so that it Is mnidered perfectly

Vumidc Semantics, accptable to adapt VCi to specific needs I
Cwplin9 Algoritymi and
ca eneator 20000 62000 9700 - Trnfnto of ane stop into the next was

done systwetically. but Infernally. No proofs
of corrctess ware given. It Is not feasible

B- 104



, - --. , -: -- . . . .- .: . . : i :: S -: d -. K . - ..- . - . .= - '

to carry out proofs of correctness without the individuals involved.
tools which can aid the proofs: even with such
tools the tas right turn out to be very large. - Ming staff with VTW experience to the prcje-t

poses no problems. Ptiving staff fror one pert

The forrulae developed in the first two steps of the project to another poses no pro.ie-s.
were not maintained up to date with the Such staff changes are feasible in the
changing Aa language. Hence the cnrylete specification phase as well as in the
line of documentation from the formal implementation phase.
description of Ada down to the implemented
compiler is lost. There are two major reasons Mking staff in the implernentation phase wit,
for this: (1) the lack of tools makes it little or no VDM experience (but with an
exter-ely difficult to maintain formal specifi- introductory course to VDM) is not feasible.
cations of the size of the Aa project, and In such cases the staff should participate
(2) maintenance of the forma] specification of also in the specification phase, mainly for
Ada is a major task in itself, taking the many the purpose of education and motivation.
changes and (still unresolved) serantic
proble m in Ada into account. In a compiler Strict (rigorous) use of VDM is not feasible
one can take certain decisions as regards the on a project of this size and nature: par-tly
imple-entation of the semantics of Ada - this due to the size of the specifications and
cannot be done in a formal specification. prograns, partly due to the chancing rec-.ire-

ments (here the changes of Ada). anage-eit
Development of a derivation step was based on must be able to deviate frc. strict VD b'y
the formal specification of the previous step giving in on formal derivations, on proofs'
and the informal description of the changes arqunents of the correctness of the derivation
A-ch had occurred to Ada in the meantime. steps, and by omitting certain derivation

steps (e.g. macro-expansion specification
"A mcro-exasion step between the co3pilir between the compiling algorithm and the actual

algorit m' and the specification of the code code generator). The advantage of VDw thus ,
generator was onitted. The macro expansion becomes that of enabling formal and precise
would have alloed for experiments with the definitions of each step and the associated
storage 3ayout at run time and with the run interfaces. ltre rigorous derivations req-ire

tieadmiistration. Hoeeciso ftesoftware tools (transformation processors,
step was (partly) justified with the fact, proof and verification tools).
that D was not directly involved in the
development of the A-machine. - 1he development of a formal definition of Ma

as the first step gave a very valuable insight
into Ada, and it made it easy for the persons

4.3 Software Mnaement Experience involved to ascertain the consequences of the
various chandges of Ada for the compiler.

- Management of the project benefits, because Hmkxever, it is not possible to derive in any
each project member knows how the work should formal way the specification of a mlti-pass
be done. compiler from the Ada specification.

The project status is more transparent due to Due to the complete formal specifications,
the various intermediate milestones which have reasonably final interface definitions (e.g.

0. to be formally specified. Progress can be intermedate languages) can be given at a
Inereiasured.s)cn egie ameasured. rather early stage. Hence, new staff a- bers
can be added for parallel work without much

-. The implementation can be divided into levels, introduction.
or intermediate milestones, in a secure way
based on the formal specifications. There is no Fbcusing entirely on the Ada language senantics
risk that the resulting lower level subset in the early phase hwapered caiytmication with
compilers carot be extended to full Ada, as other irplementors wio were more concerned
has been s-en on other projects. with irplamentation details of various specific

tau constructs. Wiese inplementors had still to
Based on experience from mr-Ada and the formal discover and understand the more fundamental
specifications of the cpi ler passes, issues and problem.
reasonably good estimates of the final program
size and resource requiraments can be made. Development Including managemn of formal
lover, it became evident that the experience specifications of a size coparable to that of
fram the earlier OCC L I pilr project the formal definition of Ada Is hardly possible

1ould not be applied. This indicates that the withoft the surt of software tools (cross
actual style and level of the formal specifi- dhecking formalae, cross-referencing).
cation are rather persoml, in that they
depend on the authors. HFnce the anont of - Oite a large nwntjer of trivial errors in the
work in deriving inplame tions depends on specifications were not found until they were

B-105

% 1'1" ' t % ."'''...'. .. "-. ," "-',/ <, , .""""."" .'" ".""'"% """.i,''"''"A". , ' .-.% . ;'"..'''''''"" ,-,



detected in the corresponding coic. sjch 5. Conclusion
errors could be detected in an earlier sta.e
by proper Vrm-tools. Our overall conclusion is that the project ocid,

not have been carried out to the achieved level
- ftintenance of larae formal specifications is of quality within the time frame availahle 'ithoit

not feasible witho6t tools. unless the orioinal the use of VDM. Co-parisoms with other methods %
developers are available for the maintenance, cannot presently be made due to lack of data fror r.

similar large-scale projects carried out with
The lack of VDM tools makes production and similar formal methods. Hckoever, most, if not
maintenance of the documentation very all, other formally based methods are too riccrcs
expensive. The SLC-Ada docmentation has been to allow for practical use - hence (part of) the
maintained only ry marking the chanoes in pencil adxntaoes we have cained frx- VF cannot
in the original documents. However, this necessarily be proiected onto other methods as
approach is not satisfactory if the doc-ents these will not be able to handle projects of the
have to be used by persons other thar. the size and c lexity of the DOC Ada projec-t. A
authors. discussion of varioJs methods based on experien.e-

fr., smaller projects is available in [5], whereas
In the SI.-Ma case the static serantics VIV1 has been given a critical review in £12].
specification proved a useful reference
document, whtich was frequently used to settle
quickly any debate about the ccntents and 6. Rferences
meaning of the subset.6.Rfrne

[13 H. Bekid, D. Pj;rner, W. Henhapl. C.B.
12 mostly minor errors were found in the S eJones and P. Lucas: A For,.= Definitior. of
Ada during the functional test carried out by a PL/I Subset, IBM. Vienna, TR25.139, Dec.
the DX uality Assurance manager. None of 1974.
the errors required changes in the initial 194
design or inmlerentation strategy. The pro- £2] P. Bj rner, O.N. Cest (eds.): Toa-de a *" -"
gram under test consisted of 30.000 lines. ForaZ Description of Ada, Lecture Notes
18.000 of these were developed by use of VDM,. in Coputer science. Vol. 98. Springer

The numrber of errors found after delivery of Verlag, 1980.

the SLC-Ma was very lo. Less than 0.5 (3) D. Bjrner, C.B. Jones: ForwaZ Spec.fe:-o-
percent of the initial develcpment time was and Software Devueopment, Prentice-Hall
used on Pmintenance ad extensions of the International Series in Cciputer Science, %
subset. 1982.

The Ouality Assurance function could be [4) A. Church: The CacuZli of Lambda-Conversion, "
applied at an early point in time: 7he formal Annals of Math. Studies, 6, Princeton
specificatons was scrutinized on a sanple uLiversity Press, N.J.. 1941.
basis by the Quality Assurance staff, Who
mainly focused on critical areas as the synbol ES) B. Woen, H.!. Jackson: A CritieaZ Appcis
table building and application, and on the. of Formal Softcre Development Theories,
interfaces. methods and TooZs, ESPRIT preparatory study,

- he Quality Assurance staff must incorporate 5Th, June 1983.
VDM skills (at least) of the level of the [6) L. Ibsen, L.O.K. Nielsen, N.M. J0rgensen:
develqiiwat team. A-Machine Specification, AWl.RFW/0001.

The tim schedule laid down in the original Oiristian lvsing A/S. lhrc 1983.
work plan of 1980 has been followed by and (7) V. Dne -Gouge. G. Kahn, B. Lang, B. Krieg-
large: accoding to this schedule the compiler B7 uck. r: On the For al Definitio of
and run tim system should be operational in Ada. s D o Vol. X, N.l, -.
Septeuter 1983. The date achieved was Pay 1983 Jch 1980.
for the level 1 subset, August 1983 for level
2, AM February 1984 for full Ada. [8) G.B. Clemensen, R.H. L45vengreen: Portable

It*resoures stiate Intheoriina woltAda Programminag Sys tem, Dynace Semantics,
- The rssaor-es estimated in the original rk Dm~cription of Ada Tasking, MC, Nov. 1981. f
plan in 1980 were insufficient; the overrun
amounted to 37 per cent. Hence we ould only [ 3. Vrgeren: PoPUoKS Ada Program-ng
keep the tie schedule by adding staff to the Sytm, Ada Static Semantics. , AS AS2
project. VOM here helped to mke this fairly Transformtion, MC, Feb. 1982.
easy as discussed above.

B- 106
%V

|a

.a~.J..e '..J. .. L~. J. ~ .. .o• ,:



DI H. Bruun, J. Bundaaard, J7. Joz-oensen:
Por:able Ad2 ??c'1~anng Sycte., Ae.2 Static
Sen~tics, klel-formrcd'neas Criteria, MC,
Mmrch 1982.

[11) J.S. Pedersen, P. Folkjaer. 1.0. Hansen:
Portable Ada Pro jraomicing System, Dyraarnc
Semnkltics, Description of Sequen2tial Ada,

(12) S. Prehn. L.0. Hansen. S.U. Palm, P. G6bel:
Forf&:Z Methods Appraisal, Part 11, A
Cri.ticaZ Examination of VD#,, DD, June 1983.

d (~13) DIANA Reference ManuaZ, Revision 3, 7PA
~ Laboratories INC. Febr. 1983.

(14) Reference Manueal for the Ada Progrojmring
Languagc, ANSI/t'IL-S!D 1815A, January 1983.

[15) J.E. Stoy: DenotationaZ Seman~tics: The
Scott-Sr rachey Approach to Programr.-ing

*Lane-age 21heory, ICT Press. 1977.

L7

B-10 7



The Draft Formal Definition of Ada®
Commission of the European Communities: Multi-Annual Programme%

The R8le and Scope of the Formal Definition of Ada

Dines Bjorner

September 9, 1985

3-10

%



WDraft - -m

Z F*ormal

PREVIOUS PAGE *'..

DOCUMENT HISTORY

(1) Version 0 of this document was very preliminary. It has not

been internally reviewed among the Ada FD project partici-

pants.

(2) Version 0 was being externally distributed on a courtesy ba-

sis. It was not to be further distributed outside the pro-

ject partners. Receivers were kindly asked to submit com-

ments before 15 August 1985.

(3) Version 0 was subject to a write-in internal review.

This internal review started 23 July and ended 15 August

1985.

(4) Version I resulted from this write-in review. It is now

subject to a pre-external review: 23 August - 1 Sept 1985.

(5) There will be no external review of this deliverable.

(6) Version 2 should result from this formal internal review.

It will then be submitted to the CEC, 9 Sept 1985.

(7) The CEC will review this version 2 on 1 Oct 1985.

(8) Further versions are expected to be produced throughout

the project life.

PROJECT SPONSOR

* -This report represents work which is fully funded by the CEC

(Commission of the European Communities) under the Multi-Annual

Programme in the Field of Data Processing, Project No. 782: "The

Draft Formal Definition of ANSI/MIL-STD 1815A Ada".

3-111-



Dratt

p of Ada

N
4',-

"i

.4

~am

B. 41

".-i

B- 1 2 
U g

1! 5 (. . - ". *



raft

h 
hFormal

o Ad 
- 3 -

ABSTRACT

This document defines:

(a) Relevant Ada programming language issues,

(b) what is meant by a formal definition (FD),

(c) the various user groups of an Ada FD, and
(d) the uses these groups may have of such an FD.

From the extensional requirements (sects.2-3) that these users

expect an Ada FD to fulfil, and from the state-of-the-art of
formal definition techniques and methods (sect.4), we then de-

rive the basic intended characteristics of the particular Ada

FD to be constructed in this project, first ideally (sect.5),

then realistically (sect.6).

This document is to serve as part of the final, full documenta-

tion constituting the Ada FD.

The r6le of this document is twofold:

(I) To serve as a "yardstick" with which to "measure" the

conformance of the intermediate and final results of

on-going Ada FD project work w.r.t. the perceived

r~le of the Ada FD, and

(II) as one of several kinds of introductions to the Ada FD
project.

The present, initial, version will differ slightly from a final

version in that it addresses mainly document rble (I), whereas

the final version should address rble (II).

... 1

' .-,: . ',., . .i, .'. ., , . . .. ' , .. .,., '. . . . ., . . • . .. .- :.- D--.-, 1.,,1 -



draft

S of Ada

-N-

B-114



* 
O. TO RE D HI DOCUMENT 

---

Draft
W*Wn ofan

Z olAda 4 
p~

0 %5

ir

HOW TO READ THIS DOCUMENT. 
.

Sections 5 and 6 contain the core of this report.

-'V

4.

P..S

U..

-

I-11

* a- * ,' . . *5 ~ % . .: :



Fomis

'to°

opo

'p -i1.

-i4



ZOrartForm i

CONTENTS

Par It Preliminaries Page

0. Project Overview 9
0.1 Background 9
0.2 Purpose 10
0.3 Project Partners 10

1. Report Structure 13

Part II: On Programming Languages

2. Language Issues is K

2.0 Language Design 16
2.1 Language Properties 16
2.2 Language Implementation 17

2.2.1 Interpreters 18
2.2.2 Compilers 1
2.2.3 Support Tools 18

2.3 Language Use 19
2.3.1 Programming 20
2.3.2 Documentation 20

2.4 Standardization 20
2.5 Teaching 20
2.6 Research 21
2. 7 Conclusion 21

3. Users and Uses of an Ada FD 23
3.1 Language Designers 24
3.2 Implementors 24
3.3 Programmers 25
3.4 Standardization 26
3.5 Teachers, Instructors, and Programming 27

Consultants
3.6 Scientists 27
3.7 Validators 29

B-117

% 1111111 ........



-- - 317 .- - r - 4 . . 4

jr*

Faffrfl

Page

4. Language Specification 31

4.0 Language Description Categories 31

4.0.1 Reference Manual and Rationale 31

4.0.2 Implementors Guide 32

4.0.3 Compiler as Language Describer 33

4.0.4 Formal Definition 33

4.1 What is meant by 'Formal' 34

4.2 Formalization Techniques 34

4.2.0 Deductive- and Model-oriented 34

Specifications

4.2.1 Axiomatic Semantics 36

4.2.2 Algebraic Semantics 37

4.2.3 Denotational Semantics 38

4.2.4 Structural Operational Semantics 39 U
4.2.5 Other Specification Techniques 39

4.3 The Ada FD Approach 40

Part III: Specification Requirements

5. Requirements to the Ada YD 45

5.1 Legal Contract 47

5.2 Consistent and Complete 48

5.3 Comprehensive and Concise 48

5.4 Correct and Believed Correct 48

5.5 Accessible and Referenceable 49

5.6 Permissive 49

i 5.7 Implementation Independent 49

5.8 Basis for Processor Development 50

5.9 Basis for Validation 50

5.10 Basis for Proof Systems 51

5.11 Mechanizable 52

5.12 Basis for Prototyping 52

5.13 Correlatable 52

5.14 Basis for Document Derivation 53

5.15 Maintainable 53

5.16 Assumptions 53

4 5.17 Derived Requirements 54

3-113

-C-"- - " ! . " i "; --



Drft 

'-..

Definition
ofAd - 7 -

Part IV: Summary Page

6. The R81e and Scope of the Ada FD 55 '. .

7. Conclusion 59

8. References 61

ApedxA: Mnemonics A-i

Appendix B: Terminology B-i

-.' C,-.-

..4-o

U -.

k

'p2

3-1119 -a..

................................ ° . °.... .. ... ....................................................., * * * * * **'..,. . ,,,. ". '*" " ,-$.'. &..' -.: .-.. -...-,k'>'.'-- ,.',, '3'-', a.- A1' L..k,'. . -)hS . ".-L , """C



rho

Definition
of Ada-s -

i

p

NN p;

N-_ 
[



7Pvft. - 9 -

-- of Ad"

0. PROJECT OVERVIEW
,.

We briefly give a set of contextual facts concerning "The CEC

MAP Project: The Draft Formal Definition of ANSI/MIL-STD l815A

Ada" henceforth referred to as the Ada FD project. For under- v
standing the unpleasantly heavy use of mnemonics, please re- I
fer to Appendix A.

0.1 Backqround

The Ada programming language is described informally in the

so-called Language Reference Manual, LRM, also known as the

ANSI/MIL-STD 1815A standard.

Many Ada compilers (several academic and several industrial)

have been, or are being developed, in USA and Europe (West and

IEast) - world-wide. Many, including some commercial compilers,

are labelled Ada, but compile subsets of, or extensions to Ada.

Ada appears to be destined for extensive use in educational, corn-
mercial, industrial, and military contexts.

V There is an obvious need for an Ada standard with no deviations:

.. subsets, extensions, errors, or mis-interpretations.
-%.-

The US DoD was, from the very beginning, clearly aware of this.

And the CEC quickly established industrial projects not only

aimed at producing European Ada compiler products and competen-

ce, but also, on a broader scale, at acquiring deep and wide-

spread insight into all aspects of Ada. Thus, the CEC, in

1980, established a number of very active so-called "Ada Europe"

working groups.

The present project must be seen as an outgrowth from so-

N*1 veral years of often deeply technical and theoretical discus-

sions, especially in the Ada-Europe Working Group on Formal

Semantics, and the working group on Formal Methods.

Sf3-121

," ," .'. " ' .' .' . '." •• • -* * ','*"""" . " . """" '" .'" """ - - '. "'a "* " a" "*.*'" . '-, , - - ' .'"• - - •"- .- * " - ."." - ."



3rantFormat
Definition
oAda -10-

0.2 Purpose

The purpose of the Ada FD project is to produce, during 1985-
1986, a draft formal definition of the language as defined by
the language Reference Manual ANSI/MIL-STD 1815A Ada.

We list the major deliverables:

I: A Formal Definition, referred to as the Ada FD, of ANSI/

MIL-STD 1815A Ada.

X1: A precise definition, referred to as the Ada FD MTL, of

the definition Methods, Techniques, and Languages (no-
tations) used in producing the Ada FD.

III: A detailed, comprehensive cross-reference, referred to

as Ada FD/LRM, between the Ada FD and the ANSI/MIL-STD

1815A LRM.

XV:- An Ada FD Primer introducing the Ada FD, in careful over- U
views and details, independent of the LRM.

.- V: Computerized, reasonably portable tools for reading and
manipulating (i) the Ada FD, (ii) the Ada FD MTL, (iii)

the LRM and the Ada FD/LRM, and (iv) the Ada FD Primer,

i.e. all essential documents produced by this project.

0.3 Project Partners

The Ada FD project is carried out under an almost fully paid

4. contract to the CEC jointly by Dansk Datamatik Center (DDC)
(Denmark) and CRAI (Consorzio per la Ricerca e le &pplicazioni
de Informatica) (Italy). DDC is the main contractor. M-

In this Project DDC makes use of consultants (Prof. Hans
• .Bruun and Hans Henrik Lfvengreen) from the Department of Com-

puter Science at the Technical University of Denmark.

B-122



| ft
-Form-11-

of Ada

CRAI has sub-contracted certain parts of these project parts to
the CNR-IEI in Pisa (Istituto di Elaborazione della Informazione

of the Italian Consiglio Nazionale delle Ricerche), and other-

wise makes use of consultants from the Universities of Pisa and

Genoa (Prof. Ugo Montanari, Inst. of Informatics, Pisa, and Prof.

Egidio Astesiano, Math. Inst., Genoa).

DDC has more than 5 years of experience in formal definitions

(mainly the CHILL and Ada programming languages), in extensive

Ada programming (more than 1/3 million lines of Ada), and in

systematical development, from formal definitions, of production

quality compilers for CHILL and Ada.

r.
CRAI, with its sub-contractor and consultants, has played a ma-

jor r8le in the Italian Consiglio Nationale delle Ricerche pro-

ject Cnet: a formal programming methodology and software engi-

neering project for distributed programming and computing (Campus

net).

B.. 
-2

.

- .*



he
Fonna S$dento -12-

.7

B-12



o Ada
A

W 1. REPORT STRUCTURE

The purpose of this report is twofold: first to identify and

review:

p, (i) language issues to be defined (Sect.2),

(ii) users and uses of a language specification (Sect.3), and

(iii) language specification techniques (Sect.4), and then

(iv) to identify (Sect.5) and review (Sect.6) the require-

ments which the above three aspects imply of the Ada

FD specification.

Given the (current) state-of-the-art in formal language defini-

tion techniques, section 6 is a preview of the extent to which
we, today, believe that the Ada FD will fulfil these require-

Ments.

A final version of this report, to be edited when the project

is (almost) completed, will attempt to assess whether these

requirements have then been met.

So: we see the three subject categories (i-ii-iii): language is-

sues, user groups/expectations and specification techniques as

almost orthogonally (independently) setting the scene for our

endeavour. Exactly how we see these subjects determining our

task is then detailed in section 5 (iv).

The reader is therefore asked to regard sections 2-4 as inde-

pendent approaches to the problem at hand: the construction of

an acceptable definition of Ada.

The reason for listing so many language issues, uses, and

users is the following: we wish the resulting specification to

address as many of these as are relevant. Or, putting it in the

opposite: not doing a proper analysis (viz. realizing which

could be the potential language issues, uses and users) would
most probably hamper our specification work. We are trying to

avoid making a specification for its own sake.

lm.

fL- 125

. . . .. .. . . . . . . .



rhe
Draft -

Formai -14-
Deflnition

zot Ada

We want a specification which is of relevance, which is im-

portant, and which, hopef ully,. is to be i nf luential. The areas it

could influence are those of the language issues, and the lan-

guage uses and users.

3-126



A 3l A '- - 15 - "-''.."

2. LANGUAGE ISSUES 4...

A language specification should take a clear stand on which

language issues to cater far, and which to dispense with.

Therefore, we list a number of language issues.

In sections 5 and 6 we shall then conclude which of these

issues will be in the domain (is. within the scope) of the

specification.

A number of language issues, other than specification, can be

identified. The meaning of the concept "language issue" should

transpire from the below analysis. There is no guarantee, nei-

ther that this is a complete list, nor that it is a list of in-

dependent (orthogonal) issues. Since the subject of "language

issues" itself is not exclusively a formal one, but also re-

lates to pragmatic issues (such as the interests of individuals,

groups, and institutions), and derives from their expectations,

the treatment necessarily has to be informal. Yet, we shall try

to be systematic.

We see the language issues to deal with.

(0) Language Design

(1) Language Properties

-- Determinism, non-determinism, concurrency, incorrect-

ness, erroneousness, undefinedness, implementation

dependency, etc.

(2) Language Use

-- Use in the programming situation, by the ordinary

programmer, for the development of worthwhile pro-

grams

-- Use for program documentation

(3) Language Implementation

-- Development of interpreters

-- Development of compilers

-Development of support tools: documentation aids,

proof systems, etc.

(4) Standardization

B-127

..--.. .



DraftZrh
Forma- 16 -
Oefinton
of AdT

(5) Education: teaching and training, textbooks and reference

manuals

(6) Research U

2.0 Language Design

*' The language has been, or has to be, designed.

In designing a programming language, the designer usually has
two other concerns: programming techniques (methodology), and

compiler (interpreter) implementation. The designer should,
however, have a third concern: ease, or elegance, of explaining

the semantics. Formal specification may offer a tool to be used

actively by language designers.

One last concern could be: to what extent, in what sense, and
how (if relevant) a language design permits language subsets or

extensions.

(The current version of Ada is constantly undergoing re-design.
It is not planned that the Ada FD project should offer explicit

liason to the on-going ISO Ada L4C (Language Maintenance Commit-
tee). We shall, however, inform the ISO Ada LMC about problems
arising from potentially questionable language design. But that

is not an active design issue, such as "what effects do I get,
if I design a construct such-and-such?". Our input to the ISO

Ada LMC is more of the passive character: "since you have now
designed this/that construct such-and-such, let us inform you

of the following problems: .... )

2.1 Language Properties

The language has properties.

The issue here (in the context of given, accepted, and reliable

language designs) is: Independently of the detailed specific

semantics, how can we characterize and classify language features -

B- 23

7,



-- 17 -

so that a design (and its specification) most "directly" and
faithfully, abstractly defines these features.

The kinds of language construct properties we have in mind are:

(i) deterministic features, like statement sequencing

and specific order of elaboration (e.g. left-to-

right)

(ii) non-deterministic features, like arbitrary

order of evaluation (e.g. subprogram parameters)

(iii) concurrency (parallelism), like tasking

-. o--

(iv) incorrectness: certain syntactically correct composed .*

features not being defined semantically

(v) erroneousness

(vi) undefinedness

(vii) implementation/target machine dependent features

The problem at hand is: for each construct, or combination of
constructs to classify it according to the above categorization,

and then, if feasible, to find and apply a most fitting defini-
tion technique.

2.2 Language Implementation

The language has to be implemented. Hence, implementability is

a language issue.

Language processors are either:

- interpreters,

- compilers, or

- support tools

3-129



ISOraft I
Forr~- -!A-

Definitn

of Ada

2.2.1 Interpreters

It is, for example, a language issue to which extent various j
bindings of a program (e.g. of its names to their meaning) can
only be done at run-time. That is: how dynamic are these bindings
in the sense of names being bound (in different runs of the
program) to different kinds (or types) of objects. The more so,

the more programs have to be interpreted.

2.2.2 Compilers

At the opposite end of the binding spectrum from all being ful-

ly interpreted, we have fully static bindings, i.e. bindings
the validity of which can be checked before run-time, i.e. at
so-called compile-time. The more so, the more programs can be
compiledl

So the position in the spectrum from compilability to intrinsic

forced interpretability is a language issue. It is a relevant

question whether a language definition reflects this position
in the spectrum.

2.2.3 Support Tools

A number of different kinds of support tools can be identified.

Programming-in-the-Small Tools
Program Re-use Tools

Programming-in-the-Large Tools
Program Verification: Theorem Prover and Checker Tools

Separate Compilation Supports
Program Linking and Loading Tools
Program Testing and Validation Tools

4. Program Debuggers

Program Execution (Run-Time) Supports

Program Maintenance and Version Control Tools

B-130
- /,' J' ,, @ . . . . ' " . 4 ." • . . . -.-. .



na -19-
Definition~4/
of Ads

The extent to which a language lends itself, through distinct
or similar facets, to each of these tooling and support possibili-
ties (whether desirable, or relevant) is a language issue.

2.3 LanquaQe Use

The language is to be used.

The issue here (independently of a formal language specifica-
tion) is: the use of the language in the programming and in the

program documentation situations.

An additional language question may be: which are the various
uses (the categories of applications) into which the language

will come?

S.. We attempt, without here expecting to be exhaustive, to list
some uses:

Computation-Intensive: Numerics (Number "Crunching")

Symbolics (Algebraic Computa-

tions)

Process-Intensive: Control (Embedded systems)

Communication (Networks)

Data-Intensive: Databases (Input Systems,...)

(Information Systems)

Deduction/Inference- " U.

Intensive: AI (Knowledge Based Expert

Systems)

.-

B-131

%* %S"h 3.,



Z Oratt
Fonma- 20Oefindto
of Ad&

These various uses are made by users, and these users expect to
find (in a language definition) answers to questions related to

each of the above-listed areas. j

2.3.1 Programming and Program Proofs

Programs have to be developed, and some of them proven correct.

Therefore, the issue is : in which ways does the programming
language lend itself to, for example, stepwise, modularized
(etc.) approaches to development, and to reasoning about worth-

while programs.

2.3.2 Program Documentation

Programs have to be documented.

The issue therefore is: through which mechanisms does the lan-
guage lend itself to program-documentation. I

2.4 Standardization

A language can be standardized.

The ease or difficulty with which (1) a language can be standard-

ized, (2) a standard can be adhered to, and (3) a standard can
be maintained is a language issue.

2.5 Teaching

A language has to be taught, i.e. it has to be understood.

The ease or difficulty with which a language can be taught and
understood, and textbooks and reference manuals written, is a

language issue.

B-132

0 € ' .. ' ,. .. . - . ..



Otaf -21-
Formaih 21
Definitlof
of Ad&

*,,.

2.6 Research "-

A language is a live or a dead object.

The excitement (disappointment) generated by a good (bad) lan-
guage design is reflected back into the scientific community.

The foundational and methodological research into a language is

a language issue - even when this research is done for pragmatic,

opportunistic reasons.

f'(4
2.7 Conclusion

We have listed some language issues. We have tried not to com-
mit ourselves, or the parties involved in these issues, yet to

any stand on these issues vis-a-vis a formal definition, and
which of these issues an Ada FD reflectsi The next section will

take a first view of this latter concern.

, %

ZIP. B-13

%N

p.l

, .. '

B-133.



4%

5,.

The ~*9**

Draft 
9.-Ponnal U

I, otAda -22-

V

-A

Up r

"N,9
.4

I'.

C,

-4

-w

a..

-'

p.

4.
S 

'N

4
.4.

4.

3.

p
4'-

.4'

.7\

5'

S
4%

:0

4'. 
tO

.9
4'

.9 0
p

I

S 
'N

4

.4

U
*5 13-134
'U

4 N'S 4.4.. -
%%%% ~ '. '.'. VV% %%%''.%' %.4 - *,~ *19 fl~f.'.')

5
'9 .



- The7
f Adna - 23-

3. USERS AND USES OF AN Ada FD ~

Various authors have listed categories of users.

In [2] we find:
' .

Users, implementors, and textbook writers.

In [4) we find:

Users, educators, manufacturers, compiler writers, and

theorists.

In [5) we find:

Designers, implementors, and programmers.

In £6), we find the best list so far, including:

Novice/practising/sophisticated progammers, local experts,

educators, implementors, validators, designers and language
reviewers, standards people, programming methodologists,

and formalists.

These lists of users imply similar lists of uses. Below, we

have basically followed the proposal of £6).

Let us assume that a perfect, all-encompassing formal definition

of Ada, with all the desirable properties (whatever they are),
could be produced! By whom and to what would or could such a
definition potentially come into use? This section tries, on
the background of the tentative enumeration of section 2, to

list such potential.

Some [43 say that "a language definition should be the ultimate
authority on a language", and "it must contain answers to allN

questions about the language". £4] does not outline the nature
of these questions. Our section 3 is an attempt to do so.

B- 135-VD



Fomii - 24 -I"Deflniton

of Ada

3.1 Language Designers [5)

Usually, language designers are experts in program coding (i.e.

program implementation), and in language implementation (typi-
cally "compiler writing"). Language designers do not, with rare

exceptions [27), master natural (national, e.g. English) lan-

guage stylistically well. At least not to the degree that is

really needed for writing a precise reference manual. Despite

this, language designers are most often the only, or at least
the first, to write such an informal document. Language

designers are to a somewhat larger degree capable of reading

the now classical formal definition styles ([37)).

Despite the above, a r61e of a formal definition is to advice

the designer of all language trouble spots, i.e. ambiguities,

undefinednesses, inconsistencies, and incompletenesses.

Another r~le of a formal definition derives from the process of

attempting to formally define a language. The ease (or difficul-

ty) with which this definition process proceeds could be an

indication of some "measure" of naturalness ("artificiality")

of the proposed language construct. [This last postulate is not

objective in cases where the chosen definition method (tech-

nique and semantic language) is ill-suited for its purpose,

anyway).

Section 5 will state the current Ada FD position on the above

points.

In summary, we conclude that (C63) "language designers (and

distinguished reviewers) should be primary users of an Ada FD

- also in their r8le of advising standardizing committees

about language changes".~-

3.2 Implementors S] .

In [5), three kinds of expectations that implementors might have

of an Ada FD are identified:

B-136--

",..S - -., -. S,.,S. , . -,.' .. . ' . .. ,..... -. . .' . . ' ' ° ' ' ' ', , - . . ' <



* , - 25 - .-.'.

of Ada -5

(1) "advice concerning the meaning of some language feature",

incl. "what it is supposed to do",

(2) "advice concerning implementation", and

(3) advice concerning "actual certification of compilers,

or possibly compiler components".

[In [5] the above (1-2-3) are stated w.r.t the functions of
a validation centre - rather than, as here, w.r.t an Ada FD.]

Certainly an Ada FD should resolve (1).

Insofar as an Ada FD is constructively defined, e.g. in a model-
oriented denotational, or operational semantics formalism, such

an Ada FD could also give some kind of advice concerning pt.(2).

And insofar as an Ada FD can serve as a reference point w.r.t.
validations, it can also (circularly) satisfy point (3).

Ways of serving as a reference point for certification (valida-

tion, etc.) are: (1) implementations could be proven correct

w.r.t an Ada FD, and (II) implementations could be subject to

testing by means of a set of correct and incorrect programs

automatically generated from an Ada FD.

Section 5 will state the current Ada FD project position on the

above points.

In summary, we conclude that ([6]) "implementors of compilers,

interpreters, and support tools (interfacing to the syntax and
semantics of Ada) need the Ada FD to decide on language issues".

3.3 Programmers

Following [63 we sub-divide this group into:

"(a) Novice Programmers:

-- e.g. having never heard of generics, *%

3-137

~ -a -* a' * .. . ... .. ~ ... a.



-26- 5
DeflnMton 2
ot Ada

V

(b) Practising Programmers:

-- e.g. users of generic packages,

(c) Sophisticated Programmers:

-- e.g. producers of generic packages."

The position of [6) seems to be that neither of these groups

should or will be potential users of an Ada FD. We tend to con-
cur.

Instead, we believe that other user groups, in particular educa-

tors (writers of reference manuals and textbooks on Ada), and

local experts (i.e. programming consultants), should/will act

as intermediaries between programmers and an Ada FD.

In [5], on the other hand, a useful emphasis is put on the r~le

of the programmers vis-a-vis an Ada FD: discrepancies (found

by programmers)

(I) between a validated compiler and reference manuals or

(2) between two validated compilers, and

(3) clarifications of language points which are unclear in C-
reference manuals

should be duly communicated to the definers and, subsequently

the maintainers of an Ada FD.

3.4 Standardization

Members of language standardization committees (ISO, ECMA, ANSI,

BSI, DoD) and language maintenance committee (Ada LMC) have many

r8les [6]: "they act upon advice from validators (to resolve

mis-interpretations), from designers and reviewers (to decide
(between) possible changes)", and from implementors (e.g. to help

easing the burden of compiler realization); and they are, in

cases, otherwise influenced by e.g. manufacturers' wishes (to

sub- or super-set the language, to interface it to database

languages, etc.).

Am
B-13 -



ZThDraft -27-
Deflnton
of Ada

It is believed that members of such committees [6] "should be

most familiar with an Ada FD, and interested in its maintenance".

g Their use of an Ada FD and its updates should be to help decide

on, or between proposed language changes. In attempting to

introduce a language change into an Ada FD, insight might be .'
A".

gained as to the desirability of such a change. We are referring

here to the ease (naturalness) (or difficulty (artificiality))

with which such a change can be introduced into an Ada FD, to

the containment (or propagation) of language changes, and to

the reduction (or expansion) in size of an Ada FD that proposed

language changes might incur.

3.5 Teachers, Instructors and Programming Consultants

To this class we count the writers of text books, reference

manuals, and programmers' guides on Ada. And we shall illustra- .

tively see their r~le vis-a-vis Ada in this light, only.

It is [6] "expected from them that they spend some time study-

ing an Ada FD". And it is believed that they should be able, .

from such reading, to extract various levels of informal docu-

ments, also representing various views on Ada. Included among
these, should be the ability to extract various kinds of language

subsets for student and programmer introduction and programming

specialization.

In addition, they should be able to consult the Ada FD on

language issues arising from their involvement in deeper tech-
nicalities, e.g. where, on behalf of programmers and implemen- U
tors, they find the kind of discrepancies listed in section 3.3

3.6 Scientists

In [6J, this group of users of an Ada FD is also called for-

malists.

%

3-139
9.,



mD-RI?2 747 PROCEEDINGS OF THE IDR (INSTITUTE FOR DEFENSE fAA4YSES) 4,04
MORKSHOP ON FORMA.. (U) INSTITUTE FOR DEFENSE ANALYSES
RLEXANDRIA YR U T HAYFIELD ET AL. NOY 85 IOR-N-135

UNCLSSIFIE DECL I@3957 IDA/H- -3579 F/9/2 NL

EhmhhhmhmhohEI
Ehmmhhmhm



1j. 2-

I.., - 6 lIE

1.25 11111 20



Z OrattDefin- 28 -
of Ads

(It will basically be computer scientists who will produce an

Ada PD. )

Formalists (computer scientists) could potentially be extensive

users of an Ada FD. Their uses of an Ada Fd could be as a basis

for [63:

(1) the derivation of proof rules for Ada programs - given

that the Ada PD in question is not itself formulated in

terms of proof rules;

(2) the derivation of Ada program transformation rules -

possibly for use in programming or in compiler op-

timization; and

(3) the derivation of a co-ordinated formal semantics of a

specification language for defining program properties.

Point (3) is an extension of points (1-2). In addition, an Ada

FD could be used by formalists as a departure point for:

(4) investigations into its semantic foundations, other .

than (1-2-3), for example into areas that may not expli-

citly be covered by an Ada PD (areas such as: fairness,

performance, complexity, realtime concerns, etc.); or

(5) investigations into other, competitive semantic defini-

tion methods for the sake of fruitful (counter-)argu-

ments, the further progress of science, etc.

The production of an Ada PD is a considerable undertaking and

will result in a very large document. Such a document will like-

ly not be perfect - solving all recognizable issues, let alone

identifying all such. An Ada PD is therefore expected to be a

live document continually being questioned by scientists.

B-140



Oraft '

of a - 29-

3.7 Validators

The issue of the relationship between an Ada FD and Validation
is treated in [3) and (S-6).

[53 examines the r6le of an Ada FD document w.r.t. the functions

of an Ada compiler validation centre. [3) examines postulated

desirable relations between an Ada FD and the so-called ACVC

test suite. [6) effectively summarizes (5).

The issues raised by [3) are dealt with in our section 5.10. We

now summarize (5-63 and also inject additional points.

By validation in general we mean a process, between a customer

and a supplier, whose aim it is to improve confidence in the
correctness of a specification, a design, or an implementation

(i.e. code), or in the claim that a specification, a design, or
an implementation fulfils given requirements.

In general we see such a process as being carried out by some

combination of formal proofs of correctness, and test case ex-
ecution (i.e. testing). A proof of correctness would be of an
implementation with respect to a specification. The proof (of a

theorem) could either be provided by a theorem prover, or a ma-
nually provided proof could be verified by a proof checker, or
by some combination of the two. The theorem is stated by sup-
plier and customer in unison. The selection of test cases and

their expected results is likewise a contractual issue between
supplier and customer.

Testing is a combination of two things: (1) a systematic and

organized search for a counter-example to a claim that a speci-
fication, a design, or an implementation is correct, and (2)

the (possibly partial) execution of a specification (etc.) in

order to demonstrate that it (they) fulfils some non-functional

requirements. Correctness proofs usually only tackle functional

(formalizable) requirements. On this very general background,
the validators' use of an Ada ?D is many-fold:

B-141

-'y.



Z rart
Femal 30
Defiu'4bo
of Ada

(1) as a basis for organizing the systematic search for coun-

tar-examples to claimed proofs,

(2) as a basis for generating test programs - both correct
and in-correct, and

(3) as a basis for deciding on tests for non-functional, i.e.

unspecified properties.

Concerning (2) there are two issues related to the possibility
* of using an Ada PD: (I) to synthectically generate correct and, J"

desirably, incorrect Ada programs, and (II) to generate the
kind of answers a compiler should output upon (or while) execut-
ing such generated programs.

Very little knowledge is available in these areas (1-2-3). [6] 1P
mentions [283 as a possible source of inspiration.

3-142

w.

;5

3-142 "



ZTh

4. LANGUAGE SPECIFICATIONS

References [10,11,12,15,16,173 contain specific language spe-

cification proposals. [53 actually lists a more refined list of

specification varieties than [163. Section 4.0 borrows from [5].
Section 4.2 borrows from [163.

,.,
4.0 Language Description Categories

A language can be defined in either of a number of alternative,

contrasting or complementing ways:

(1) through a Reference Manual [23], and its Rationale [24]

(2) through an Implementation Guide [203
(3) through an Implementation [19)

(4) mathematically

[5) also lists the possibility of a pseudo-formal (notational)

description, which lies somewhere between (1) and (4) in

that only an informal definition might be given for the descrip-

tion language itself, whereas its syntax looks formal. In a

sense, [21), [25], and, to a small extent, [223 could be

rightfully accused of being pseudo-formal.

4.0.1 Reference Manuals and Rationale -. 4

By a language reference manual (LRM), we operationally understand

an informal document which in a technically carefully controlled

dialect of a natural language, e.g. English, explains the seman-

tics of another language, namely the programming language. (The

syntax is usually given by some RUP-like grammer.)

By a programming language rationale is understood a necessarily

informal document which explains the pragmatics of the language.

(It is informal since pragmatics is an informal issue.)

B-143
. . V.'
t -

,,,-,-.--...-,:,,. ,,.,..-.-.-. -.-,.. -. , ... > --.... ..- ... .,.u-..-...- :::::.



77 ~)vawt 32-
Oefntion
of Ada

An LRM [23] does exist, and a draft partial Rationale [24] now
exists.

Usually, LRMs suffer from lack of precision due to the use of

a natural (national) language. To alleviate the lack of

precision, the description often becomes stilted, legalistic.

[26) could be accused of that.

Rationale documents are the source of the non-functional defi-
nitions and pragmatic information - where LRMs tend to concen-
trate on syntax and functional semantics.

LRMs and Rationales are deemed indispensable for reasons of
readability, but suffer in accesibility and referenceability,

as defined in section 5.6.

4.0.2 Implementors' Guide

By an implementors' guide (for some programming language), is

understood a (formal or informal) document which lists any 'S

number of hints on how to implement a processor for that

language.

For Ada, there was an implementors guide [203. Its usefulness

was rather limited. [203 suffers from four things: (1) it is
based on an informal LRM, (2) it was issued at a time when
Ada was still being (re-)designed, (3) it is itself informal,

and (4) it could be critisized for reflecting an out-
dated compiler writing technology.

As a reference to a programming language for others than

implementors, an implementors' guide is usually almost useless. .'

Insofar, as an implementors guide takes the opportunity to

clarify language semantics that* is left unclear in an LRM,
such a guide is useful, but we consider the place and time

ill-chosen precis& semantics should be given in the LRM and
in an Ada FD.

3
3-144 "

* I • • • ° ° . . . . . . . . . . . . . . - , . o , o . o - * . . • , . . . . . , -,



DW raft
Oeftiaml - 33-ot Ada

Insofar, as an implementors' guide enumerates ranges of permis-

sible implementation choices, such a guide is considered most

useful.

Finally, the concurrent existence of both an LRM, an Im-

plementors Guide, and possibly an Ada FD poses the problem of

maintaining consistency. Especially, if the last two are
6W derived from an LRM. We advise the other way around%

the derivation of an LRM and Implementors Guide(s) from an FD.

4.0.3 Compiler as Language Describer

In the 1960's it was a commonly taken view that compilers de-

fined their languages [19). As long as programs in what was

believed to be one language were not ported between different

compilers (usually on different computer mainframes), no real

harm seemed imminent. With porting, or copying program frag-

ments between different installations, problems became ap-

parent. By porting compilers, these problems seemed to dis-

appear for a while. There was, and maybe still is, a need, CU.
within one mainframe to make use of distinct processors for

supposedly the same language, e.g. compilers which optimize,

for production run-time performance, or interpreters with

good programming time debugging facilities, or, perhaps more

relevant, which 'prove' program propertiesi

We take the view that neither of these kinds of processors

define their language, but that they are "derived" from a

(possibly formal) definition.

4.0.4 Formal Definition

The fourth language description, or definition, possibility

is that of a formal definition. We devote sections 4.1-2 to

that subject.

B-145



tafl

Deflnit~on
of Ada 34

4.1 What is meant by 'Formal'

From the terminology# appendix B, we get definitions of what

is meant by formal: formal development, formal document, for-
mal language, formal method, and formal proof. The essence

of 'formal' is that whatever is formal is expressed within a
formal system, i.e. in a formal language, either being, or

accompanied by, a proof system.

The notion of a formal system is invented in this century.

It was introduced in order to tackle the foundations of mathe-
matics. As such, 'formal systems' belong to meta-mathematics.
And as such, they certainly run the danger of loosing a hold

in reality [40].

Mathematics, for milleniums, was tightly rooted in observa-

tions in physics and in everyday human life. Accordingly,
much mathematics was presented with analogies to this reality.

Meta-mathematics tends to be presented at most by reference
to mathematics - a universe in which arbitrary, finite and
infinite, imaginable and un-imaginable objects may exist.

Computer science deals, not with mathematics, but with the

objects that may exist in machines and in their man-made cre-
ation. To do computer science, we use mathematics. But we

follow, in this project, the dogma that this mathematics
should be firmly related to the programming language world
as outlined in sections 2 and 3.

4.2 Formalization Techniques

4.2.0 Deductive and Model-Oriented Specifications

For the purposes of the present subject, an Ada FD, we
distinguish between two styles, or aims, of formalization:

Deductive, Assertional, or Property-Oriented, and

Constructive, or Model-Oriented.

r-146

: , , , , , .,- ... ... .. ., ' ', + , ,. .+ .,e ; , , , -. , ,,,. .:. . - o'/+'-, . . '' " '" " " '' "" "" " "' """ ' '" V" ". '



WJ 6- - -- -4 ~ -: -. -. ~ . ~ ~ ~ ' -- -. - - --

Draft

Osfirim
of Ada

(We refer to the terminology for the definition of these

terms.)

Proof system oriented specifications, i.e. specifications
which directly lend themself to reasoning (about the object

defined, and to be implemented), are typically deductive

(assertional, property-oriented). Such specifications, when
expressed freely, usually require a proof of their (own)
consistency and completeness, and of the fact that they do
define something. That is: that they have at least one

model. 

Model-Oriented specifications, as the name implies, directly

describe, i.e. are, the models. It is in that sense that
they are constructive.

Usually, one desires the properties, but specifies a model.

Several reasons may account for this: (1) most software people,

today, are trained to think model-oriented, (2) model-oriented

specification techniques are, today, capable of tackling the

definition of far more complex systems than the deductive

techniques appear to be, (3) what is specified has to be

pimplemented, i.e. one has to find a model - sooner or later,
and (4) the state-of-the-art in going from a deductive defini-

tion to a constructive specification is somewhat lacking.

A property-oriented definition lies close to the customer's
way of formulating his requirements, whereas a constructive

specification similarly lies close to the supplier's way of
thinking of his job: that of developing an implementation

from the specification.

Ideally, we would like to see first a pure, deductive defini-

tion (of, say, Ads), and then, from it, rigorously derive a

constructive specification.

Realistically, we may hope that it is possible to prove what

is deductively defined (i.e. a deductive definitions' axioms

(etc.)) to be satisfied (i.e. to be properties) of a construc-

B-147



,W V, 117

U F mal 36Oefinition

of Ada

tively specified model.

From the above, the reader may guess that the current Ada FD

project takes its departure point in a model-oriented world,
but that everything will be done, within the evolving Ada FD,

to secure the possibility of deriving properties rather

directly.

A number of specification techniques cover the span from de-

ductive to model-oriented definitions: Axiomatic, Algebraic,
Structural Operational, Denotational and Mechanical Semantics.
A short, very cursory survey of these will now be made.

4.2.1 Axiomatic Semantics
N..

Roughly, an axiomatic semantics specifies relations between

states of the specified system.
!

In an axiomatic specification of a programming language, its
semantics is given in terms of axioms and deduction rules

(for using these axioms). .-

[36, 373 are seminal references on this subject.

Such axiom systems seem ideal as proof systems for the lan-

guage they specify. The problem is, however, that they become

rather cumbersome, if not outright in-applicable, when having
to deal with a complex language like Ada. Focal points for

complexity aret gotos, procedures, parameter passing, and

tasking.

This rather negatively sounding dismissal of Axiomatic Seman-

tics as a basis for an Ada FD must not be mis-understood.

Beautiful languages can be designed and effectively used,

their semantics being so specified. [42, 43) provide con-
vincing evidence. Here, the axioms are expressed in a dif-

ferent style and are called laws. Most likely, future lan- '.
guages will be designed on the basis of their proof system

i
B- 14 U1

'. ° ° . . ,, '. ° o . '. ' , -' . ° O - °- • " • . - " . ° • - .. . •% ° . - " ° - . .o o. , -. • % .o V



ZTh*
-ratt 37-

Definrlion
of Ada

being simultaneously evolved!

4.2.2 Algebraic Semantics

An algebraic semantics specifies the meaning of a system as a

class of algebras.

In an algebraic specification of a programming language, its

semantics is given in terms of an algebra presentation,

consisting of a signature and a set of axioms. Usually, an

algebraic presentation is (syntactically) constrained so as

to guarantee the existence of models. The meaning of an al-

gebra presentation is usually some class (or category) of

algebras. The axioms are usually equationally specified.

E353 provides today's most accessible introduction to alge-

braic semantics.

Again, we find that algebraic semantics specifications ought

to be ideal as a basis for language proof systems. No alge-

braic specification has yet been given for any sizable clas-

sical language (ALGOL 60 or larger), let alone for concurrency

aspects of such a language. Problems in their applicability

(in addition to those of axiomatic semantics techniques) seem

to be their inadequacy ±n handling higher order functions (pro-

cedures with procedure parameters) and tasking.

This rather negatively sounding dismissal of Algebraic Seman-

tics must not be misunderstood. What we are indicating is

only that we may not be defining (parts of) Ada directly in

terms of algebraic semantics. You may find. however, that

the definition style we eventually adopt will involve (a)

definition language(s) the semantics of which may be given

algebraically.

Z- 149

___ 
.*. %



M w"T , 1.%Tw -. r 7.7
•  

-
•  

. w
-

7•

Oraft

Foma -38-Oe~.,tiai
of Aaa

4.2.3 Denotational Semantics

U

A Denotational Semantics defines the meaning of a system to

be a set of mathematical objects (like sets, functions, cate-

gories).

In a denotational specification of a programming language, its

semantics is usually given as follows. First, one identifies

the specific mathematical object one wishes to attach to simple

identifiers of programs. [Examples ares variable identifiers

may denote functions from so-called environments to locations,

label identifiers may denote so-called continuations, i.e.

functions from stores to stores, procedure identifiers may de-

note functions from argument (denotation) lists to continu-

ations, etc.] Thus, we first establish the meaning of simple

language constructs. Then we express the meaning of composite

language constructs as functions of the meaning of their con-

stituent components. (This latter is really an algebraic

(homomorphic) principle, and not necessarily characteristic

only of denotational specifications.)

Denotational specifications directly specify models. As such,

they are not directly useful as proof systems, and not much

systematic work has been done, nor are systematic techniques

available for the extraction of proof systems from denotational

specifications. The power of denotational semantics is that

it deals effectively with gotos, procedures, parameters, and

exceptions and with most other deterministic language features.

Problems of denotational semantics are shared variables,

Ada-like processes, and non-determinism. We refer here to

the availability of techniques proven on large scale applica-

tions. There are recent research results (like (44]) which

appear very premising, but for this project they have, unfor-

tunately as it may seem, to be discounted for exactly the

reason of their experimental nature.

.
."'.. " ".: " •".. - -.." j..-"." . .",""" ".- "L'' ''" .. .'''.- .',' ." " ."" , "' .":B-, .15') " "



4 .- 3 9--."'3 9

Zof Ada

4.2.4 Structural Operational Semantics

A Structured Operational Semantics (SOS) defines the meaning

of a system by the set of all allowable transition sequences
that may be observed in a system (state) while subjected to

execution.

It is in this latter sense (execution) that SOS is "opera-

tional". It is structured in that transition rules are in-
ductively specified, based on the structure of the system in-

put language. -.

[32, 45) provide first and latest references to SOS.

An SOS specification is usually given in terms of a set of
transition rules and rules of induction for using the former.

A transition rule consists of a triple: the "before", the
"after", and the "condition" (label) under which a system may

transit from a before configuration to an after configuration.

Configurations and labels are rather free-wheeling notions,
and may involve state components such as stores, program frag-

ments and other control information.

SOS specifications eminently model non-deterministic and con- " -

current language aspects, in addition to trivially being able

to model deterministic features. SOS specifications appear

promising as a basis for direct or derived proof systems. SOS

.- specification techniques, when brought to bear on the full

complexities of Ada tend to result in rather complex con-
figurations and labels.

4.2.5 Other Specification Techniques

We have indicated that none of the above techniques, except

perhaps SOS, is fully capable of handling the specification

of all aspects of Ada.

p-.

.4B-151

q ' " : "' -,-''' -.-''i-. ; '' , ; .-



o -- 40-

Oefintioni
of Ada

In addition to the above techniques, others have been

used and/or proposed:

SEMANOL [17, 46), VDL [34), Meta-IV/CSP [21]. This is not

the place for even a cursory description of these more

operational (mechanical) definition styles.

It is implied in the above rather cursory remarks that

the present Ada FD will not entirely rely on any one of them.

[17) points out, very importantly so, the need for, first,

establishing a model for the underlying semantics when dealing

with a complicated system like Ada. That is: that one, in a

sense, starts afresh, forgetting, for a while, the dogmas of

e.g. Axiomatic, Algebraic, or Denotational Semantics, i.e.

of their underlying mathematics.

4.3 The Ada FD Approach

Although not intrinsic to the purpose of this document,

we do present a very cursory overview of the approach to an

Ada FD currently taken within the project.

D-SMoLCS [333

The Method

In the D-SMoLCS (Denotational SMoLCS) approach, the formal ,

semantics of Ada is presented in two hierarchical, top-down

steps:

(1) Denotational Model . £

(II) Semantic Algebras (SMoLCS)

It is developed in the reverse order of thesel

B-152 G77

• "' " +"'" '' . . +,p€ .. "' "' "'" ""'2" '".".'.v. . -,t ,'+ '. " " " "r "e



ort - 41 -.

Z- eof AdW

ot~da

-- 1: Denotational Model

The denotational model, in order to model all aspects of con-

currency and non-determinism, will be expressed using a number
,a

of operators like e.g. I (for "in parallel"), (overloaded) +
(for "choice"), (for "followed by"), etc. This model can be

based on the use of the exit mechanism, and in either an

imperative or an applicative style (as possible in Meta-IV), "

or on the use of a continuation mechanism (also possible in

Meta-IV).

(As a consequence, the resulting model is one which can be..

read by humans.)

-- I Semantic Algebras (SMoLCS)

The denotations of the model presented in the first step are
presented in this step. On one hand there are these denota-

tions, and, on the other hand, there are operations (like
"I., " , ", ",", ":, etc.) on them. The meanings of -

these operators are likewise presented.

These presentations are given in five configurational, bottom-

up sub-steps:

Basic Transition System %

In the Basic Transition System sub-step, we specify what the

element Actions of the individual processes are.

Synchronization

To a Basic Transition System, we add rules (parameters)
governing the synchronization points between processes, i.e.
we define atomic actions. _.

B-153

v %



Foqmai42
Draft

Defintion

Parallelism

Given a Synchronized System, we add rules (parameters) for the

(parallel) (e.g. mutually exclusive shared update) composition

of processes.

Monitoring

* Given a Parallel System, we add rules (parameters) which define

, restrictions on the behaviour of the processes of the parallel

system.

Observational Semantics

Given a Monitored System we may now wish to interpret the

given semantics at any one of a number of levels of observa-
tional abstraction, input/output* interleaing, fair-merging,
truly parallel, etc. This is done by suitably parameterizing

the algebraic specifications which have been given of the

synchronization, paralleism, and monitoring operators.

D-SMoLCS: Its Semantics
.-.

SMoLCS can be embedded in an SOS specification. For the sake .

of obtaining the much desired properties of the Observational

Semantics, Algebraic embeddings have instead been used. Other,

more functional approaches are conceivable.

The Current Ada FD Components

Basically, we plan to divide the Ada FD itself, into two-by- '4.5

three components:

(1) A static, and

(2) a dynamic semantics specification - each consisting of

3-154
7 ** . - ~-



OTmft 43

of Ads

(1) syntactic and
(2) semantic domain specifications, and

(3) the semantic function definitions/equations.

The domain specifications will be specified in Scott theory,

i.e. as possibly reflexive domains. The notational style is

basically that of lMeta-IV.

The static semantics functions will basically be centered

around a pure, applicative Meta-IV subset (e.g. not using

the exit mechanism), but may define certain static seman-

tics domains and operations upon their objects algebraically.

The dynamic semantics is presently planned to be based on the

D-SMoLCS approach. For practical reasons it will consist of

three parts: "sequential Ada", "tasking Ada", and "Input/Out-

put Ads.

.4

B-155v

-'A b

B-,155

N .,-.-o .. o'. '- ._-_-_, . , -,.-- ,. , . ,.,- ..,- .-. -. -, S. , .. . . -I~ . -~ ~. -- - ~ . . . .. . . -. .-,



Z *on 6
of~da 44

-UA

La'

B-156



asTho 
-45-

5. REQUIREMENTS TO THE Ada FD

First, we give some overviews. The Ada FD, it is claimed in [1l,

should be:

(1) A Legal Contract,

(2) Consistent and Complete,

(3) Comprehensible and Precise,

(4) Correct, and believed Correct (latter from [8),

(5) Accessible and Referenceable (from E83),

(6) Permissive - where appropriate (from []),

(7) Un-biased,

(8) Suitable as a basis for:

(8.1) writing user manuals, textbooks, and primers,

(8.2) developing language processors, and
(8.3) validation, - and

(9) Suitable as a basis for:
(9.1) proving correctness of Ada processors,

(9.2) proving correctness of specified Ada programs, and
(9.3) generating test-programs for validation.

In [23, we find that an Ada FD

(1) resolve ambiguous points in the existing standard,

(2) omit points of the standard, and

(3) include points not 
addressed in standard.

(It should, to be proper, be observed that [23 asks "to what ex-

tent an Ada FD" should address (1-2-3).)

In C33, it is argued that an Ada FD should somehow be correlated

to the so-called "ACVC test suite" (jargon for an "Ad& Compi-

ler Validation Capability" collection of some 2000 test pro-

grams).

From [4], we extract the following requirements%

(1) Basis for Compiler Writing,

(2) Compiler Validation,
(3) Proof of Compiler Correctness,

34.5

* 3-15

'o'' ' , '" .'""..' '. . . ¢ '.'... . ,. ...... -,.. ,. ,- .' .- .-.- ' " . . .. - .. .. -..-. - , . . . . ..



-5 .UI 'ywlvy my W-VY WV IT 4 .-21

Z 
-rft46-Frxmai

of Ada

(4) Basis for deriving an Axiomatic Proof System,

(5) Basis for deriving Program Transformation and Optimi-

zation Rules, U

(6) Basis for Rapid Prototyping,

(7) That it be Unique (no Alternatives),

(8) Complementing and Consistent with LRM,

(9) Exposing existing/current LRM inconsistencies,

(10) Guiding Language Clarification,

(11) Machine Processable, and

(12) Correlated to ANNA [18).

In [53, we find the following requirements:

9 (1) Completeness and Consistency,

(2) No Ambiguities,
* (3) No Over-Specification,

(4) Readable,

(5) Maintainable, -'

(6) Modular, and

(7) Basis for Proofs.

In [63, related to user categories, see sect. 3 above, we again

find a good overview of requirements to an Ada FD: namely that
it be suitable for use:

(1) as a source document: by formalists (i.e. be formal),

validators (i.e. be executable), implementors, educa-
tors, and designers, '-

(2) as a canonical contract (standards) document: by stan-

dardizers,

(3) in implementationst free from implementation bias and

permissive where appropriate,

(4) as a reference document: by educators and local ex-

perts, and be: comprehensible, concise, accessible and
referenceable, and

(5) by formalists, validators, and implementors: consis-
tent and complete, and believed correct.

B-13 "



F E a : - .,I .- '-. .. .4 . - -, . . . . .

Zrhoraft -47-

of Ada

[63 seems to have used [l) and [83's requirements, but relating

them to user groups which are missing in [13 and [8].

In [73, we find the requirements that an Ada FD should be:

(1) machine readable (for tool development.),

(2) human readable, and

(3) accompanied by user's guides, structured by user

target groups, (e.g. as listed in section 3 [5)).
.'-1...

From these lists, we have then extracted the structure of this

section

1 Legal Contract

2 Consistent and Complete
3 Comprehensive and Concise
4 Correct and Believed Correct

5 Accessible and Referenceable

6 Permissive

7 Implementation Independent

8 Basis for Processor Development

9 Basis for Validation

10 Basis for Proof Systems

11 Kechanizable
12 Basis for Rapid Prototyping

13 Correlatable

14 Basis for Document Derivation

15 Maintainable

5.1 Legal Contract

By an Ada FD constituting a 'legal contract', we understand some-
thing that eventually borders upon the legal meaning of 'legal
contract', namely that a user can rely on his 'formal' under-

standing to be the same as the developers' similar understanding.

This point is then ultimately seen as leading to the derived

requirement that a definition is formal.

L-159

1S.,

ZJ0 .'.

.'/. . P .. .. ' * * j~ * * * - . - ~ . * * .. . P .,-.o.. -

I, ~ Q ~ I. -~-. ~ ----. ** ...'.%~ !!"



SOraft 4Fv a - 48- "

ot Ad

Thus, a formal definition could ultimately serve as a legal

document in a court of law.

5.2 Consistent and Complete

By an Ada FD being 'consistent and complete', we mean what .4

these terms mean in mathematical logic.

5.3 Comprehensive and Concise

By an Ada FD being 'comprehensive', is meant a relative thing:

that any person, brought up in reading formal definitions (of
such-and-such style), will have no undue, or unreasonable diffi-

culty in reading such definitions.

By-an Ada FD being 'concise', we similarly mean a relative
thing: that the definition is precise and not unduly
long.

(Both properties are definition-style independent, i.e. are
solely a function of the success with which the definers have

achieved their goal, i.e. their ability to use a given defini-

tion style according to its best intentions.)

p
5.4 Correct and Believed Correct

A formal definition of the functional aspects of a language is
'correct' if it meets the requirements of the customer of that

language. Mostly, these requirements are informally stated.
Hence, we mean something not achievable when we require a
definition to be correct! Or we could claim that a definition,
if it is complete and consistent, "by definition" is correct.

The phrase, 'believed correct', is therefore introduced. By an
Ada FD being 'believed correct', we mean something relative: if

the definition is formal, then it "mirrors", in some informal
sense of "equivalence", a "similarly official" informal defini-

3-160

-. ' -. . . .o " * .*;*;" *' .. . -- .. ..*' S. 7 : '. . . . . . . ' " -" - " "



V., - 9 7-.

Z Ora" 

4

of A

tion. That is, there are no obvious discrepancies between the

Ada FD and the original intentions (as for example expressed in

language requirements documents), or informally expressed speci-

fications, viz.: the LRM.

5.5 Accessible and Referenceable

By an Ada FD being 'accessible and referencable', we mean some-

thing a bit more absolute.

To the Ada programmer and the Ada language processor developer,

the Ada language consists of a number of commonly agreed, ver-

bally identifyable, semantic ideas (concepts, constructs, no-

tions).

Answers to questions about properties of each of these should

preferably be found, say, within the short span of a page of a

definition, i.e. be accessed by a rather direct look-up process.

Vice-versa: once this is the case, then one can refer uniquely

to such definition pages (etc.).

(This 'ability' is partly a language, and partly a 'definition'

property: i.e. if the language otherwise permits, then the

above 'locality' property should be satisfied.)

5.6 Permissive

By an Ada FD being 'permissive', we mean that the definition,
ideally, expresses all permitted aspects of 'order of evaluation',

'optimization', 'parallellism', 'non-determinism', etc.

.~a'.. .:

5.7 Implementation Independent

By an Ada FD being 'free from implementation bias', we mean some-

thing similar to permissiveness: namely, that the definition

does not unduly favour one style of implementation over another

where such choices were not intended by the language architechts.

3-161



ROOi
Oofdino -50-
ofAda

5.8 Basis for Processor Development

VI
By an Ada FD being 'suitable as a basis for interpreter, compi-
lt, and support system development', we mean that the develop-

ment covers each and every aspect of the language, and that

this coverage can be secured through use of the definition.

-- Correctness of Processor Development

By an Ada FD being 'suitable as a basis for proving correctness

of Ada processors', we only mean the constructive, a priori,

proof of correctness of the development of an Ada processor

(not any, a posteriori, given such processor). Thus, we are,

here, only thinking of an Ada FD serving as the departure point

for actual processor development. And we primarily think of

this development as transforming, refining and enriching an Ada

FD,. via stages of development, ie. via abstract and con-

crete designs, to actual implementations (code).

5.9 Basis for Validation

By 'suitable as a basis for validation', we mean: it should be

possible to construct a test-suite of Ada programs for the pur- P
poses of testing any given compiler.

The derivation of test programs should be transparent: i.e. a

human should be convinced that these are "real" test-programs.
The derivation should be "exhaustive*, i.e. convincingly span a

necessary spectrum of programs. The derivation should foresee a

range of implementations: i.e. the test programs should not

only test the 'language structure', but also foreseeable 'proces-

sor structures'.

di

"4.. B-162

2.



. ... o.. ..... . - , t 1

-Conformance with ACVC Teat Suite [3]

By 'conformance between an Ada FD and the ACVC test suite', is

meant one of the following:

(1) Ignore this conformance and "verify" conformance

between LRM and an Ada FD.

(2) Use informal reasoning to argue that the ACVC test pro-

grams are indeed processed correctly by the Ada FD,
or, which may be a possibility, show ACVC test programs

to not be correct test programs (i.e..testing contrary
to the intentions of the language designers, etc.).

(3) Use formal proof techniques, manually constructed and

verified, to guarantee what (2) sets out to achieve.

(4) Use formal proof techniques, mechanically verified, to

achieve (2).

(5) Use prototyping techniques (see sect. 5.12) to a-

chieve (2).

IS (6-7) Use formal compiler derivation techniques (see sect.

5.8) to achieve (2).

(8) Execute the Ada FD itself, directly, to achieve (2).

5.10 Basis for Proof Systems

When saying that an Ada FD could be 'suitable as a basis for

proving correctness of specified Ada programs', we assume that

the Ada programs are somehow specified, i.e. that certain as-
sertions are made regarding their properties, and then that

the definition 'formally' permits these to be shown to hold.
.5.:

This either assumes that the definition is expressed in the

form of a (set of) proof system(s), or requires that a proof

system (or set of proof systems) is derivable from the defini-

if*j tion..

B-163

-" " " "- . ..." " ,r ,-.'.'". ".".";" ,, # ..", -". .- ; -".a-4 . -'.M.f'l , t$ Ut-'. ? j '-. .- ,-.,'.,.'- , ," ."-.-. .-. :.



-. 52 -

Fonnjd 52
Demoe'tion

ZotAd&

5.11 Mechanizable

By an Ada FD being 'mechanizable', we mean that it be machine
processable.

Reasons for wanting lmechanizability' are many-fold:

(1) It would facilitate maintenance, and, therefore that an
Ada FD is kept up-to-date. See sect. 5.15.

(2) It would facilitate correlation to other mechanized
Ada documents: the LRM, ANNA, DIANA, etc. See sect. 5.13.

(3) It could facilitate scientific experiments in the areas
suggested in sect. 3.6.

5.12 Basis for Prototyping

The act of Ada prototyping leads to a prototype Ada compiler or
translator, and typically involves transliterating, if possible,
the Ada FD directly into some high level executable code, for '.
example SETL [303. Rapid prototyping means the speedy, inex-
pensive production of a piece of software that is acceptable m
as a vehicle for a number of customer "testing" purposes.

5.13 Correlatable

By an Ada FD being "correlatable', we mean the systematic,
exhaustive, and unambiguous mapping of the formulae of an Ada
FD to the Ada LRM.

'3

r 4,. , .'...¢ .... .- . -*. ..** . ... '.,.-... . , ..- *J./ .* ' /* * . * .* , *. *. .* .4- .



Draft
rhoFona 5 -

5.14 Basis for Document Derivation

By an Ada FD being 'suitable as a basis for writing user langua-
ge reference manuals' (etc.), we mean that such informal texts
should be reasonably easy to develop systematically from the

Ada FD, and should be easy to relate back to the definition,

e.g. so that their 'completeness and consistency' can likewise

be asserted. Here, we are thinking of a wide variety of informal
documents: reference manuals for, naive, mature, and sophisti-
cated programmers, respectively, for implementors, for validators,

etc.

1-.

5.15 Maintainable

By an Ada FD being maintainable, we mean that the entire FD be

computerized in such a way that a number of tools can be
developed for browsing through the FD, for following correla-

tions between the FD and the LRM (and possibly the Rationale),

etc. The MENTOR [45J system appears to be a good candidate for

support for developing Ada FD maintenance tools.

5.16 Assumptions

The above, more-or-less direct requirements, are based on a num-

. ber of assumptions [16:

(Al) "The Ada language is 'complete and consistent'"

To the extent that work on a formal definition of Ada
shows this not to be the case, an arbitration procedure

could be established to secure 'completeness and consisten-

cy'.
o,..

The position of the current Ada FD project is this: if an
inconsistency or incompleteness is properly identified,

then no formal definition will be given, i.e. the discre-
pancy in question is left undefined!

B-.65



oDrat - 54 -

Oeftition
of Ada

(A2) "There are Formal Definition Techniques that will sa-
tisfy all of the above Requirements."

To the extent that this is not found to be the case (which
we can immediately assume (1)), an arbitration procedure
must be established for deciding upon acceptable compro-
mises in definition style and/or in the use of composite,

overlapping definition alternatives.

The position of the current Ada FD project is this: the
trial definition project sub-phase together with its
external reviews will constitute such a procedure.

5.17 Derived Requirements

The above (more-or-less direct) requirements and assumptions 'A
imply a number of derived requirements.

(D) 'Complete and Consistent' implies "Absence of Ambiguities".

(D2) 'Permissive' and 'Free from Implementation Bias' implies

"No Over-Specification".

(D3) 'Accessible and Referenceable' implies "Maintainable", and

"Modular".

(D4) 'Suitable as a Basis for Implementation' implies that one

can derive wImplementation Guide-lines" from the defini-

tion.

(D5) 'Formally Defined' implies the possibility of "Language
Definition Tools" much as rapid prototypers for language
(subsets), definition ('consistency and completeness')

checkers, etc.

B'6

3-166 ":J.' 4



Z 
Thoera

flon -55-

6. THE ROLE AND SCOPE OF THE Ada FD

This chapter summarizes the position of the current project

w.r.t, the idealized requirements listed in sections 5.1-5.15

inclusive.

(1) Legal Contract: time is probably not yet ripe for the

computing community (suppliers and consumers) to rely on and to

trust an Ada FD to constitute a legally binding contract in a

court of law.r.ra

To the extent that we satisfy all subsequent requirements,

one may hope to see the present (legality) requirement being

achieved.

Thus, we conclude that our aim is to fulfil this requirement.

(2) Consistent and Complete: we most emphatically desire to

achieve this requirement. A stumbling block may, however, be

the (pragmatic) "interpretation" we attach to various notions

of erroneous, undefined, 'pragma shared', 'permissive' (e.g. in

case of non-deterministic features), etc. - as opposed to

the similar "interpretation" of our audiences the Ada Language

designers, standardizers, other formalists, validators, etc.

(3) Comprehensible and Concise: again, we most emphatically

desire our FD "to satisfy - these requirements. One of our

approaches to achieving this is to correlate the FD minutely to

the LRMs another is to annotate it, likewise minutely, to also

give an English language rendition of the formulae. This process

of achieving such acceptable correlations and annotations is

expected to feed back to the formula presentation itself.

(4) Correct and Believed Correct: we wish to achive also
this goal, and basically through the same means as mentioned

in (3).

~.

B-167
p =.*



O Daft
DeNtio -56-
ot Ada

(5) Accessible and Referenceable: also this requirement is of

utmost concern to us. We most definitely wish to achieve also

this goal.

(6) Permissive: insofar as we are able to identify all such

language properties (as have permissive, implementation-wise
Unon-deterministic" properties), we shall be expected to also

have the Ada FD be permissivel

(7) Implementation Independence: the Ada FD will most likely be

model-oriented. Denotational (i.e. model-oriented) definitions

do not necessarily bias some implementation choices over others.

The current Ada FD will, similarly to what was indicated under

point (6) (permissiveness), strive to exhibit implementation

independence.

(8) Procesor Development: the current Ada FD project, basically

having its root in a model-oriented, but abstract way of defin-

ing Ada, will strive to produce a definition which can serve as

a departure point for interpreter, compiler and other Ada tool

development.

For classical denotational and operational definitions, like

the DDC formal description of Ada e.g. 213, well-known methods

exist [47] which allow the systematic to rigorous development

of compilers from the language definitions. The current project, I.N
although claiming that it will strive to produce an Ada FD
which should serve as a basis for processor development, will,

however, not address the specific issues of how to formally

derive such processors from the currently contemplated Ada FD.

How, then, do we justify our claim ? By reference to the

model-oriented, yet abstract nature of the planned Ada FD, and

by reference to e.g. [471"

We believe that the planned Ada FD will be such that either

existing formal derivation (transformation, enrichment and

refinement) techniques apply readily, or that it will spur the

development of such techniques.

B-16 , "U

. 4
* A,, . , . ", ' - - - . ..-. , -.-. ". - , . '. -.- - - . - -, '.'.'. . '- .. . ". . .. ,. ,. , ... . '." . .



Z Then

006Ada-fAO -57-

(9) Validations a study will or might be conducted into the

feasibility of the Ada FD serving as a basis for deriving

"ACVC-like" test programs, and a study might be made into

the feasibility of using the Ada FD to prove properties of

ACVC-like programs. No attempt will, however, be made in this

project to examine any serious fraction of the ACVC test suite

for conformance to the Ada FD (or vice versal). Thus, it is

not within the scope of this project to study other than the

"basic* aspect of section 5.9 and point (1) of the same sections'

conformance part, and to study feasibility of its points (2-3-4).

(10) Proof Systemss a study might/will be made of the feasibility

of deriving (a) proof system(s) from the Ada FD. It is, however,

not a requirement that the currently planned Ada FD must be

guaranteed to yield such (a) proof system(s).

(11) Mechanizable: the current Ada FD together with the LRM,

. its correlation to the LRM, its LRM-independent annotation, and :ZJ

various, not necessarily all-including, aspects of the underly-

ing semantics of its specification language(s) will be mecha-
nized. That is: a computerized tool set will be developed for
the support of the activities mentioned in section 5.11.

(12) Prototyping: it is not a requirement of this project that

the current Ada FD become the basis, or be shown feasible as a

basis, for the rapid prototype development of, say, an interpre-

ter.

But, along the lines of point (8) above, it is of interest to

the current project to ascertain the extent of correlation be-

tween the Ada FD and the NYU/Ada ED interpreter written in SETL

[30]. The current project does, however, not provide for a
study of this, but would, in case such a study was undertaken,

be most willing to co-operate, including striving to achieve

"correlation".

:-1B-169
,. V

di..

.. .. • " -, ' '.'.- -' " '.' '.= ' '. . ' '.' .' ' . " " - -.- .. -.- - . .- .,t . --. 4.'



Drafl

of Ada -8

(13) Correlation: it is a definite requirement that the de-
veloped Ada FD indeed be strongly, clearly, transparently and

completely correlated to the LRM.
-mI

(14) Document Derivation: it is likewise (to point (13) above)

a definite requirement, imposed by the developers, themselves,

that the Ada FD be so expressed (presented) that it lends

itself nicely to the derivation of a number of reference

manuals for different levels (naive, novice, mature, experienced

and sophisticated) of programmers, implementors, scientists

(formalists), etc. The current project, however, only calls
for one such informal document to be systematically derived.

(15) Maintability: it is a definite requirement that the

c;irrent Ada FD be maintainable and as a derived requirement

we find that point (11) then arises
U

'

S..

B-i170 -

%-



of A"a -59-

7. Conclusion

We have performed cursory and enumerative, rather than deep and
analytical, studies of a number of classes of aspects of Ada,
each leading up to our enumerations, qualifying and quantifying
a number of requirements that we would wish the currently devel- .

oping Ada FD to satisfy.

We submit this overview study to the internationa.l Ada community

for its careful and co-operative scrutiny. We invite serious
C: mnts, and humbly expect both negative and positive critique.

We declare ourselves most ready to seriously evaluate all r

comments for their proper disposal (including inclusion in a

possibly reworked final version of this report) referred to, in
the abstract, as (II).

p-A)



. - - . - - . ~ *

ma
Oran

of Ada -60- U

4 c.
4

U
4*

4.
4.

4'.

.4 A
S

4-

4 .4-
4. -- S

4.

4.,

A
U,

S
-p.

*0

.1

4-

4--?

4

'4.,

4,. 4-

P
4

U
B'- 172 -'

S.

'&-.<s C-v a: 21-: -k ~x-x.s.e :.S-Lic~2§C&. -4-



Draft

ot -61-

8. REFERENCES

13 Requirements to/of a Formal Definition of Ada

Dines Bj-rner
Copenhagen, February, 1983. 4 pages

[2] What should be in a Formal Definition of Ada

R. Dewar, P. Kruchten, E. Schonberg

New York, 7 December, 1983, 6 pages

£33 Demonstrating Conformance between Formal Definition

of Ada and the ACVC test suite

R. Dewar, P. JKzuchten, E. Schonberg 1
New York, 6 December, 1983, 3 pages

[43 Requirements of a Definition of Ada

Andrew D. McGettrick
* Glasgow, no date, 4 pages . %

[5) Role of the Formal Definition of Ada

Bernard Lang,

INRIA, no date, 10 pages

[6) The Users of a Formal Definition for Ada
Bernd Krieg-Brdckner
2 April, 1983, 9 pages

[7) Working Paper for Formal Definition Working Group
Peter Wallis . '.I

Rath, no date, 1 page

£8) Joint Ada-Europe/ADA-TEC Meeting

Panel Discussion on the Formal Definition of Ada

18 March, 1982, 6 pages

E9) The DDC Formal Definition of Ada

Dines Bjrner

Copenhagen, no date, 7 pages

B-173



0ofinow" ~62-
of Ada

[103 Ada Formal Definition - Position Statement

01e Oest

Copenhagen, 14 April, 1983, 3 pages U

[11] Formal Definition of Ada, summary of Proposal

Dines B3jrner

Copenhagen, 10 May, 1983, 3 pages

[123 Proposal for a Co-operative European Effort for a Formal
Definition of Ada

Bernd Krieg-Br~ckner, Georg Winterstein

Germany, May, 1983, 11 pages

[13) On the Timing of a Formal Definition for "Ada" (TM)

C. B. Jones

3 pages

[14) Personal Views on the Feasibility, Problems and Timing

of the Ada Formal Definiton Effort

Joseph Stoy

Great Britain, 2 pages 3

[15) How to complete the Ada Formal Definition (draft)

Georg Winterstein

no date, 3 pages

[16) Note on A European VDM-based Formal Definition of Ada

Dines Bj rner

Copenhagen, 18 June, 1982, 15 pages

[17) An Abstract Systems Model of Ada Semantics

E. K. Blum

15 August, 1984

B1

B- 174



Oraft 63FormN
Oefl.tono* Ada

4.'.

[18] D. Luckham et al.: ANNA: Annotated Ada

[19) J. Garwick

[20) Ada Compiler Validation Implementors' Guide

Softech Inc., 1980

[21] Towards a Formal Description of Ada

D. Bj~rner, 0. N. Oest

Springer Verlag
Lecture Notes in Computer Science, vol. 98, 1980

. [22) Formal Definition of the Ada Programming Language

Preliminary Version for Public Review
Honeywell Inc., Cii Honeywell Bull and INIRA

November 1980

[23) Reference Manual for the Ada Programming Language

ANSI/MIL-STD 1815A

U.S. Department of Defense, Washington D.C.

January 1983

[24) Rationale for the Design of the Ada Programming Language

Draft for Editorial Review, Honeywell and Alsys
January 1984

[25) A Formal Definition of CHILL. A Supplement to the CCITT
r: Recommendation Z.200

Peter Haff, Dines Bjjrner

Dansk Datamatik Center, 1980

[261 CHILL Language Definition -"

CCITT Recommendation Z.200, 1984

[27) Revised Report on the Algorithmic Language -a

ALGOL 60
P. Naur

Comm. ACM, vol 6, No. 1, pp I ff, 1963 -.

B-175



~ Oraft64

Zof Ada

%C

[28) SIS: A Compiler Generator System using Denotational

Semantic Definitions of Programming Language, Report

ISI/RR-83-112,

Information Sciences/Institute, California

[30) An Executable Semantic Model for Ada, Ada/Ed

Interpreter

Ada Project

Courant Institute, N.Y.U.

[31) Denotational Semantics
Joseph E. Stoy

MIT Press, 1977

[32) A Structured Approach to Operational Semantics

G. D. Plotkin

University of Aarhus, 1981

[33) On the Parameterized Algebraic Specification of

Concurrent Systems

E. Astesiano, G. F. Mascari, G. Reggio and M. Wirsing

TAPSOFT Conf., Berlin, March 1985, pp 342-358

Springer LNCS vol 185

[34) Method and Notation for the Formal Definition of Pro-

gramming Languages

Peter Lucas et al.

IBM Laboratory, Vienna

TR 25.087, Revised 1 July 1970

[35) Algebraic Semantics: Initial Semantics and Equations

H. Ehrig and B. Mahr.

Springer Verlag, EATCS Series, vol 5, 1985

* "-[36) The Axiomatic Basis of Computer Programming, U-

C. A. R. Hoare

CACM, vol. 12, no. 10, pp 567-583, Oct. 1969

U

-- 17 6

%!

... , . , , . ., . , ., , ,.,,..o. .....-. , , . ,.. , '.. ,'.'.i.. .- , . "-.-. . ... .- ".-... - ".',. "."Y.



Z eftao - 65 -'

of Ada

[37) An Axiomatic Definition of the Programming Language Pascal,

C.A.R.Hoare and N. Wirth:

Acta Informatica, vol. 2, pp 335-355, 1973

[39) Formalization in Program Development,

P. Naur

BIT, vol. 22, pp 437-453, 1982

[40) Mathematics, the Loss of Certainty,

Morris Kline

Oxford, University Press, 1982

[423 Calculus of Communication Systems,
A.J. R. Milner

Lecture Notes in Computer Science, vol. 94, Springer, 1980

d[433 Communicating Sequential Processes,

C. A. R. Hoare

Prentice Hall Intl., 1985

[44) Processes and the Denotional Semantics of Concurrency

Jaco do Bakker and Zuker

Information and Control 54, 70-120 (1982)

,%r

. (45) Natural Semantics on the Computer,

G. Kahn et al.
INRIA internal report, 24 May 1985.

[46) A Design for a SEMANOL Specification for Ada, TRW Report,

7 April 1980., and: A Multi-Processing Implementation-Ori-

ented Formal Definition of Ada in Semanol, ACM SIGPLAN

Symp. on the Ada Programming Language, Boston, Mass.,

SIGPLAN Notices, vol. 15, no. 11, Nov. 1980.
F. C. Belz, E. K. Slum, and D. M. Heimbigner

* B-177

; so



Formal 6- .
raftt f

of Ada

[47] Formal Development of Interpreters and Compilers, ch.9 of
Formal Specification and Software Development,

D. Bj~rner

Prentice Hall International, 1982.

md-17



z 
rart

Formal A-1
DeliAttdw

AppedixA: MNEMONICS

Once scientific ideas reach the market place their abstract

nature gets instantiated, and comnmerical abbrevations result.

Even in Academica we see such an unfortunate trend (e.g.

ACT/ONE. ANNA, CCS, Cnet, CSP, DIANA, DSL, LARCH, LCS, Meta-

IV, ML, OBJ, SIS, SMoLCS, and SOS). Bureaucracies foster
"mnemoniconiae" (i.e. ANSI, BSI, CEC, CHILL. CNR, DoD, ECMA,

IEI, ISO, LCB, LMC, LR4. MAP, MIL-STD, and WG). To add

insult to injury we add our own: CRAZI DDC, FD, and MTLI

Abbrevations

ACT/ONE

ACVC Ada Compiler Validation Capability

ADT Abstract Data Type (usually algebraically specified).

ANNA ANNotated Ada

(D. Luckham at al.).

ANSI American National Standards Institute.

ASL Algebraic Specification Language

(D. Sanella and M. Wirsing).

BNF Backus Normal Form context free grammar.

BSI British Standards Institute.

CCITT Comit& Consultatif International de Telegraphic et

Telephonic. 4

CCS Calculus of Communicat'ion Systems

(R. Milner).

CEC The Commission of the European Communities.
.

B-i179



Draft -Foenina -
Definition

zof Ada

CHILL CCITT High Level Language. i

CLEAR (not a mnemonic, just a funny) s.:

Name of a calculus for combining algebraically .

specified ADTs.

(R. Burstall and J. A. Goguen).

Cnet Campus net (Italian CNR project).
4._;

CNR Consiglio Nazionale della Ricerche

(Italian Council for National Research).

CRAI Consorzio per Ricerca e le Applicazioni de Informatica.

CSP Communicating Sequential Processes

(C.A.R. Hoare ).

DDC Dansk Datamatik Center. N
DIANA Descriptive Intermediate Attributed Notation for Ada

DoD (US) Department of Defense.

DSL Denotational Semantic Language

(P.D. Mosses).

D-SMoLCS Denotational SMoLCS•

ECMA European Computer Manufacturers Association.

FD Formal Definition.

IEI Istituto di Elaborazione della Informazione.
.4.

ISO International Standards Organisation.

LARCH (Not a mnemonic, but a) Name for an algebraic

(semantics) specification language (family)
(J. Guttag and J. Horning).

B-1030



o Ad&

LCD Language Control Board.

LCF Logic for Computable Functions%

(R. Milner).

LCS Labelled Control Systems.

LES Labelled Event Systems.

LMC Language Maintenance Committee.

LRM Language Reference Manual.

MAP Multi-Annual Programme in the field of data proces-

sing (of the CEC).

MENTOR

Meta-IV (Not really a mnemonics) Meta-Language number four

(rhymes with: Metaphor)

V. (H. Bekie.i D. Bj~rner, C.B. Jones, P. Lucas).

MIL-STD MILitary STandarD.

*NYU New York University.

ML Meta Language (as in Edinburgh/LCF)
(R. Milner).

MTL Methods, Techniques, Languages (Ada FD)

_OBJ Algebraic semantics OBJect specification language.

SETL SET (Programming) Language (NYU).

SIS Semantics Implementation System

5 B-i 31



!N -) ru -W 77 -a
Z h~rf 

A-4

of A

(P.D. Mosses ).

SMoLCS Structured, Monitored Linear Concurrent Systems

(E. Astesiano).

SOS Structural Operational Semantics

(G.D. Plotkin).

*8. 

"U

! 
.:

4

B-382

... 

':-P.

-"*'Fk: .4,. 
4 \. K K % 4'\. .-- 5' ' - , .--. , -



z DatB-1 
'Fos -

I* Aftle of the Ada Formal Definition: Terminology

Appendix B: TERMINOLOGY

In any project, one should start out by carefully establishing

and defining the terminology, and throughout the project one
should critically maintain and adhere to this terminology.
The terms name the important concepts. Hence, the terminology
should also be part of the product.

The present section outlines only a very embryonic form of a
terminology. It is part of a continuing activity of se-
parately establishing a larger, more comprehensive, termi-
nology document.

TER~MS

Abstract Syntax

Definition of a class of objects which emphasizes their
contents and structural relationship. In contrast to a
concrete syntax an abstract syntax ignores the choice of
lexical elements and their ordering in sentences of a
language - more specifically a set of domain equations or a
set of predicates, which define classes of abstract object.

Assertional (Pre-Post Specification) Language L

An assertional specification language is one in which functions
and operations may be defined by predicates over their arguments
and results.

(In general, this technique defines a relation, and it is
understood that such a relation is satisfied by any sub-relation
with the same domain, in particular by a function with the same
domain which is a sub-relation).

Combinator

A combinator is a syntactic rule which, when applied to a
(usually fixed) number of formal documents, produces a
resulting formal document. (Typically, a combinator is one
or more symbols with rules for positioning input formal
documents in relation to its symbol(s) to form a new document
with a defined semantics.) Since the result of applying a
combinator is a formal document, there has to be a rule which

!.2 gives the semantics of the resulting document.

Concrete Syntax

A syntax which includes the definition of lexical elements
and their ordering.

B- 133

:e-....- .



DraftB-

*ft
1

e of the Ada Formal Definition: Terminology

Constructive Specification

--same as model-oriented specification.

Correctness

The concept of correctness only has meaning in a context of
a formal method which requires the generation of at least one
pair of formal documents, A and B, so that A is considered
to be a prescription for the production of B. B is then
correct if it satisfies its prescription A. Typically, there
will be several series of pairs (AB), (BC). (C.D). etc.

Data Type

A collection of objects, and operations involving these (and
possibly other) objects.

Decomposition

A transformation from A to B so that there are function@/
operations in A the behaviour of which is specified by a
composition of functions/operations in B.

Deductive Specification 3
--same as property oriented specification.

Design

The supplier's statement of how the specification will be
implemented. Such statements may exist at various levels of
detail.

In the context of a formal method, a design is a transformation
of a specification This transformation embodies decisions as
to how the specification will be implemented.

Document

Any identifiable, finite piece of recorded information produced
during a software development. A document may be expressed
in a formal language or not, and may be electronically recorded
or recorded by other means. (Thus, a program, a specification,
and doodle are all documents if recorded and identifiable
during a software development).

B 1

.. B-1.84

. - .* '..+' . . .'-.-....... .. '.'. . .... . .-..... +- . ': . a , ,+'+- , - . . . .' -+ , ,



B-3

iti~le of the Ada Formal Definition: Terminology

Enrichment

A transformation which includes the addition of functionality;
in algebraic or denotational terms this could entail the addition
of operations.

Fault Tolerance

Software is fault tolerant if it behaves correctly despite
spurious failures in its input. 1

Formal Development

A development in which each generation of a transformation
or implementation is accompanied by a formal proof of its
correctness.

Formal (Document)

A document expressed in a formal language.

Formal (Language)

Having a precise semantics and syntax. (The syntax may be abstract).

Formal Method

A (software development) method whose guidelines are forma-
lized and which requires the production of specifications
in a formal language, in addition to the implementation (1).

Formal Proof

A proof in which each step is the application of an axiom of
the inferential system or a formally proved theorem. The
result of each step is expressed in a formal language.

-Sn

Functional Specification

A functional specification is one which describes and prescribes
the behaviour of its acceptable implementations in the follow-
ing restricted sense:

(a) The only behaviour described is properties of the infor-
mation content of the information input to and output from
the implementation. No reference can be made to any
other information, such as the passage of time, the internal
representation in the implementation. etc.

B-13 5

- * 1 4.

- x~~-...:.:



Z att B-4
Definstioe
- fie of the Ada Formal Definition: Terminology

(b) The only properties which are described are those which
can be mathematically described or modelled, j

(c) The claim that the implementation possesses these
properties must be subject to refutation.

Generic Specification

A formal document which defines a class of specifications, (A
parameterised specification is an example).

Genericity

Genericity is a general principle comprising an attribute
of a document, process, method or other concept. It is the
attribute of requiring a small fixed-size change to the
document, process, etc., in order to achive a change in
applicability of the doucment, process, etc.

Implementation

An executable specification which fulfils all the requirements.

Interpretation/Symbolic Execution

The interpretation or symbolic execution of a formal specifi-cation or an abstract design consists of a mechanically

automated process of displaying properites of its implementations.

Loose Specification

--same as Generic Specification.

Maintainability

Software is maintainable if the insertion of a change can be
unambiguously and uniquely located through specification
design, and implementation.

Method

A method is a set of guidelines or rules for how to carry
out a process (e.g. software development). Typically, the

-~ guidelines refer to specific tools which are to be applied
using certain techniqued and in a prescribed order.

1-186
*•..-. - "" SS

-" '"" . "'" " ."" " "'." . . . .. "'"-S..- '* - "* . " " " - -*' ''"' "- " " " " '



l Draft 4,

Fwmai a
Defthstio-5
ot Ada

Rle of the Ada Formal Definition: Terminology

Methodology

The science of methods. It is here used to denote a framework
for a class or set of such methods.

Model Oriented Specifications

A specification (or design) which denoted a (theory of)
mathematical model(s), i.e. an object, or a class of objects
guaranteed to exist.

(In a model oriented specification language the specification
language date types are typically definable in the following
way. There are a fixed finite number of basic types supplied
in the language. Their definitions may be axiomatic in style.
Further data types may then be defined by applying type com-
binators of which there is a fixed repertoire in the language,
in a possibly recursive manner.)

L Modular(ised) Specification

A specificaition is modular(ised) if it is expressed as the
composition of specifications.

Non-functional Specification

A specification which prescribes that its implementations
%Ishall possess a set of properites which do not comprise a

functional specification (q.v.)

Parameterised Specification

Consider a specification combinator to the following form.
The combinator is a formal document containing place-holders.
The formal document becomes a specification if and only if
the place-holders are associated with and semantically repre-
sent other specifications. Such a specification combinator
is called a parameterised specification.

Performance

Performance is a quality of software which is not expressible
within its functional specifications. The performance of
software is the economy with which it exercises the resources
of its environment. (Such resources are typically computer
storage and c.p.u. time but, may be extended to include '

resources of a wider environment, such as fuel consumption ofa software controlled industrial process.)

q 3-187'

V '.



*. - . -' . . . . . . . ... . .. h
-  

J . -i . i.-. , , . .- . . . . .. ,

For B-6
z o Mt~e of the Ada Formal Definition: Terminology

Programming
S

The activities involved in requirements definition, speci-
fication, design and implementation.

Property Oriented Specifiaction

A specification is property oriented if it defines the
external characterisitcs only.

A property oriented specification language is one which
permits the definition of data types by defining new functions
in the sorts of which the data type to be defined occurs,
and then listing properties of the new functions. This in
general defines a class of data types, and there will be
defined an "interpretation* which will identify (to within
isomorphism) a unique data type from this class. An alternative
to the last provision is that of a loose interparation in
which the data type is not further identitied. The specification
which reusults is then parameterised, and will become a
proper specification when an instatiation of the data type is
given which define it uniquely (to within isormorphism).

Properiety, Proper

Propriety (adjective: proper) is the attribute of software
of fulfilling the functional and non-functional (q.v.
expectations of its users. (If the requirements documents
have been adequately formulated, they should be caputured therein.)

Prototype

An executable model that conforms to a subset, or is a
projection of the requirements of the specification.

Prototyping

The act of constructing a prototype. Typically involved
transliterating a specification or an abstract design into

8some high level executable code.

Refinement
A structure preserving decomposition of specification A to (a

possibly abstract) design B, or, similarly, from design B to
design C, etc.

B-188 7



F.,.malB-7j ~of Ada

R61a of the Ada Formal Definitions Terminology

Reliability "

Software is reliable if it is both correct and also clearly
rejects input explicity excluded from is specification.

Requirements
The customer's statement of his needs.

Requirements Analysis

An analysis of the customer's needs, cf. contractual model.

Rigorous Development

A.development in which each generation of a transformation,
refinement, or enrichment gives rise to a proof obligation,
which can be accompanied by a rigorous proof. -'.

Rigorous Proof

A rigorous proof is a demonstration designed to convince
others (that a formal proof could be generated) of the truth A
of some assertion.

Robustness

Software is robust if changes to it do not hamper its quality,
i.e. its conformance to its functional and non-functional
specifications (q.v.).

batisfy

A formal specification B satisfies a formal specification A
-' if B exhibits all the behaviour specified by A.

Software Engineering

The total support process of producing and delivering implemen-
tations and maintaining them, starting from requirements.

M

Specification

.The supplier's description of the functional behaviour of
the implementation and the process of producing it.

B-

B-i 3-9

p:, .. .:.if.4 -.. .'-.(4 ' - . , '- *', %* 'f............ ...' .......-.......'.-. .-.-. '-.--



W Draft -

ok of the Ada Formal Definition: Terminology

Specification Composition

The process or result of transitively applying a number of
combinators to a number of specifications to produce aresulting specification.

Specification Language

A language in which specifications can be expressed.

Specialization of Specifications

The process of transformning a generic specification into a
formal document whih defines a sub-class (possibly one)
of specifications.

Support System

An integrated collection of tools supporting some particular
kind of activity in the software field. The activity may be
broad or narrow.

Symbolic Execution

--same as interpretation.

Syntax

A definition (usually formal) of the allowable sentences of
a language.

Systematic

A systematic method (as oppoesd to a rigorous or formal one)
is one comprisinfg rules and/or guidelines for the ordered
production of (mostly informal) documents within a development
process. A systematic development is one carried out according
to the rules and/or guidelines of a systematic method.

Testing (1)

The systematic and organized search for a counter-example to
the claim that a specification/design/implementation is correct.

B4.

B-19 3 "-



-9

= e of the Ada Formal Definition. Terminology

Testing (2)

The (possibly partial) execution of a specification in order
to demonstrate that it fulfils some non-functional requirements
(and hence to demonstrate its propriety).

Tool

An object that can be used in the process of developing (and
maintaining) software systems. Tools include both computerized
as well as non-computerized (manual) tools.

Transformation

The process or result of generation a formal specification B
from a given formal specification A such that B satisfies A,
where the internal structure of B is normally not a decomposition
of that of A. The term is often used in the context of a
machine-generated or machine-assisted transformation.

Wherever no specific qualification is made, transformation
will include the concepts of refinement and enrichment.

User r ,

Someone who uses Ada FD.

Validation

A process within the contractual view of software development
which improves confidence in the correctness of a specification,
design, or implementation, or the claim that a specification,
etc. fulfils the requirements. This could be the production
of a proof in the former case.

Verification

A proof that a transformation, enrichment, or refinement is correct.

Or, alternatively: A process within the contractual view of
software development which improves confidence in the well-
formedness and non-degeneracy of a specification/design/im-

-.. plementation. This could be the production of a proof.

A'

B-191



fl, 4 .4

Draft
Fomial 3
DefinitionZ of Ada

.4.

4..

N

4.,

*4

-t

V

a,
N
.4

4P4

S
a.

a.
'4,

a.

C

4 t.
a

.4. -,

.4.

* .7

4..

.4

U
4j4

a,
a,.
4%

U
~ 192

~4,* 'N%'N"''%%%WV -



DISTRIBUTION LIST OF M-135 'I

Bernard Abrams ABRA14S@USC-ECLB
Grumman Aerospace Corporation
Mail Station 001-31T
Bethpage, NY 11714
(516) 575-9487

*Omar Ahmed
Verdix Corporation
7655 Old Springhouse Road
McLean, VA 22102
(703) 448-1980

*Eric R. Anderson TRWRB!TRWSPP!ERA@BERKELEY
TRW DSG (R2/1134)
One Space Park
Redondo Beach, CA 90278
(213) 535-5776

*Dr. Thomas C. Antognini SECURITY!TCA@MITRE-BEDFORD or
MITRE Corporation T CV B@ 14TRE -BED FO0RD
Mailstop B330
Burlington Road
Bedford, MA 01730
(617) 271-7294 ..-

Charles Applebaum CHA@MITRE-BEDFORD
1058 Boyurgogne
Bowling Green, OH 43402
(419) 352-0777

Krzystof Apt
Thomas J. Watson Research Center
P. 0. Box 218
88-KOI Route 134
Yorktown Heights, NY 10598
(914) 945-2923

Terry Arnold MERDAN@ ISI
Merdan Group
P.O. Box 17098
San Diego, CA 92117

Ted Baker
Department of Computer Science
Florida State University
Tallahassee, FL 32306
(904) 644-2296



David Elliot Bell DBELL@MIT-MULTICS
Trusted Information Systems, Inc.
3060 Washington Road
Glenwood, MD 21738
(301) 854-5889 F

Dan Berry
3531G Boelter Hall
Computer Science Department Z
School of Eng. and Appl. Science
Los Angeles, CA 90024
(213) 825-2971
Edward K. Blum BLUM@ECLB

Mathematics Department
University of Southern California
Los Angelos, CA 90089
(213) 743-2504.

* Alton L. Brintzenhoff SCI-ADA@USC-ISI
SYSCON Corporation
3990 Sherman Street S
San Diego, CA 92110
(619) 296-0085

* Dr. Dianne Britton HELBIG@ISI
RCA Adv. Tech. Labs
ATL Building
Moorestown Corporate Center I
Moorestown, NJ 08057
(609) 866-6654 or (609) 924-3253

* Dr. R. Leonard Brown BROWN@AEROSPACE

M/112
The Aerospace Corporation
P. 0. Box 92957
Los Angeles, CA 90009
(213) 615-4335

Richard Chan RCHAN@USC-ECL (bad)
Hughes Aircraft Co.
P. O. Box 33
FU-618/P115
Fullerton, CA 92634
(714) 732-7659

* Norman Cohen NCOHEN@ECLB
SofTech, Inc.
705 Masons Mill Business Park
1800 Byberry Road
Huntingdon Valley, PA 19006
(215) 947-8880

'U*



Paul M. Cohen PCOHEN@ECLB
Ada Joint Program Office
OUSDRE/R&AT

Pentagon Room 3D139 (Fern Street)
Washington, DC 20301-3081
(202) 694-0211

Richard M. Cohen COHEN@UTEXAS-20
Institute for Computing Science
2100 Main Bldg.
University of Texas
Austin, Texas 78712
(512) 471-1901

Michael D. Colgate FREEMAN@FORD-COS1
Ford Aerospace & Comm. Corp.
10440 State Highway 83
Colorado Springs, Colorado 80908

* Mark R. Cornwell CORNWELL@NRL-CSS
Code 7590
Naval Research Lab
Washington, D.C. 20375
(202) 767-3365

Major Terry Courtwright COURT@MITRE
WIS/JPMO/ADT
7726 Old Springhouse Road
Washington, DC 20330-6600
(202) 285-5056

Dan Craigen CMP.CRAIGEN@UTEXAS-20
c/o I. P. Sharp Associates
265 Carling Avenue
Suite 600
Ottawa, Ontario, Canada KlS 2E1
(613) 236-9942

Steve Crocker, M-101 CROCKER@AEROSPACE
The Aerospace Corporation
P.O. Box 92957
Los Angeles, CA 92957
(213) 648-6991

John J. Daly WCOXTON@USADHQ2 .
USAISSAA
2461 Eisenhower Avenue
Alexandria, VA 22331-0700

,%

.le



g

Tom Dee
Boeing Commercial Airplane Co.
P. 0. Box 3707
MS 77-21
Seattle, WA 98124
(206) 237-0194

Jeff Facemire FACEMIRETI-EG@CSNET-RELAY
Texas Instruments
P.O. Box 801
M/S 8007 '
2501 West University
McKinney, TX 75069
(214) 952-2137 "-N

* John C. Faust FAUST@RADC-MULTICS
RADC/COTC
"Griffiss AFB, NY 13441
(315) 330-3241

Gerry Fisher
IBM Research 35-162
P. 0. Box 218
Yorktown Heights, NY 10598
(914) 945-1677

Roy S. Freedman FREEDMAN@ECLB
Hazeltine Corporation
Greenlawn, NY 11740
(516) 261-7000

James W. Freeman
Ford Aerospace & Comm. Corp.
Mailstop 15A
10440 State Highway 83
Colorado Springs, CO 80908
(303) 594-1536

Mark Gerhardt MSG@MITRE-BEDFORD
MITRE Corporation
Burlington Road
Bedford, MA 01730
(617) 271-7839

Chuck Gerson
Boeing Aerospace Co.
Mailstop 8H-56
P.O. Box 3999
Seattle, WA 98124

6e

S.



Helen Gill
MITRE
Mailstop W459
1820 Dolly Madison Boulevard
McLean, Virginia 22102

(703) 
883-7980

Kathleen A. Gilroy
Software Prod. Solutions, Inc.
P. 0. Box 361697
Melbourne, FL 32936

~ Virgil Gligor
Department of Electrical Engineering

Uniersity of Maryland
College Park, Maryland 20742 '",

(301) 454-8846

Donald I. Good GOOD@UTEXAS-20
2100 Main Building
The University of Texas at Austin
Austin, TX 78712
(512) 471-1901

Ronald A. Gove GOVE@MIT-MULTICS
Booz, Allen & Hamilton
4330 East West Highway
Bethesda, MD 20814S (301) 951-4624:'N

*Inara Gravitis GRAVITIS@ECLB
SAIC
1710 Goodridge Drive
McLean, VA 22202
(703) 734-4096 or (202) 697-3749

* Col. Joseph S. Greene, Jr. JGREENE@USC-1SI
DoD Computer Security Center
9800 Savage Road
Fort Meade, MD 20755-6000
(301) 859-6818

David Gries GRIES@CORNELL
Dept. of Computer Science 4'
Cornell University
Ithaca, NY 14853
(607) 256-4052

"V

• %* " -

* I°



David Guaspari RPLATEK@ECLB

Odyssey Research Associates
408 East State Street
Ithaca, NY 14850
(607) 277-2020

* J. Daniel Halpern SYTEK@SRI-UNIX or

SYTEK Corp. MENLO70!SYTEK!DAN@BERKELEY
1225 Charleston Road
Mountain View, CA 94043
(415) 966-7300

Kurt W. Hansen KHANSEN@ECLB
Dansk Datamatik Center
LuudToftevej iC
DK2800 Lyngby
Denmark
PHONE: ++ 45 2 872622

Scott Hansohn HANSOHN@HI-MULTICS

Honeywell Secure Comp. Tech. Center
Suite 1302855 Anthony Lane South
St. Anthony, MN 55418

(612) 379-6434

• Larry Hatch HATCH@TYCHO
DoD Computer Security Center
9800 Savage Road
Fort tleade, MD 20755-6000
(301) 859-6790

Linn Hatch
IBM
17100 Frederick Heights 41
Gaithersburg, MD 20879

• Brian E. Holland BRIAN@TYCHO
DoDCSC, C3
9800 Savage Road
Fort Meade, MD 20755-6000
(301) 859-6968

Ray Hookway HOOKWAY%CASE@CSNET-RELAY
Dept. of Computer Eng. & Science
Case Institute of Technology
Case Western Reserve University
Cleveland, OH 44106
(216) 368-2800

4,'

4-



Paul Hubbard HOOKWAYZCASE@CSNET-RELAY
Dept. of Computer Eng. & Science

L Case Institute of Technology
Case Western Reserve University' Cleveland, OH 44106
(216) 368-2800

Jim Huitema
National Security Agency
R831
Ft. Meade, MD 20755
(301) 859-6921

Larry A. Johnson LJOHNSON@MIT-MULTICS
GTE "
77 "A" Street
Needham, MA 02194
(617) 449-2000 ext. 3248

Juern Juergens JJURGENS@ECLB
SofTech, Inc.
460 Totten Pond Road
Waltham, MA 02254
(617) 890-6900 ext. 316

Matt Kaufmann CMP.BARC@UTEXAS-20
Burroughs Corp.
Austin Research Center
12201 Technology Blvd.
Austin, TX 78727
(512) 258-2495

Prof. Richard A. Kemmerer DICK@UCLA-CS
Computer Science Department
University of California
Santa Barbara, CA 93106
(805) 961-4232

John C. Knight UVACS!JCK@SEISMO
Department of Computer Science
Thornton Hall
University of Virginia
Charlottesville, VA 22903
(804) 924-1030

Major Al Kopp AKOPP@ECLB
Ada Joint Program Office
OUSDRE/R&AT
Pentagon Room 3D139 (Fern Street)
Washington, DC 20301-3081
(202) 694-0211

.. • o. -. . .. +, ,. . . . . . . . . % . • . . . . . . . . .""

p .. • • , . . . . . , . . .. . . . .. . . . , - - . .



Thomas M. Kraly
IBM Federal Systems Division
Software Eng. & Tech. 4D08
6600 Rockledge Drive
Bethesda, MD 20817
(301) 493-1449

Dr. Jack Kramer KRAMER@ECLB
Institute for Defense Analyses
Computer & Software Eng. Div.
Alexandria, VA 22311
(703) 845-2263

Eduardo Krell
3804 Boelter Hall
UCLA
Los Angeles, CA 90024

Kathy Kucheravy 

DoD Computer Security Center
9800 Savage Road
Ft. Meade, MD 20755

Dr. Kenneth Kung KKUNG@USC-ECLA
Hughes Aircraft Company
Ground Systems Group
M. S. 618/Q315
P. 0. Box 3310
Fullerton, CA 92634

. (714) 732-0262

" *Carl Landwehr LANDWEHR@NRL-CSS
Code 7593
Naval Research Laboratory
Washington, DC 20375-5000
(202) 767-3381

* Mike Lake MLAKE@ECLB
Institute for Defense Analyses
Computer & Software Eng. Div.
1801 N. Beauregard Division
Alexandria, VA 22311
(703) 845-2519

Randall E. Leonard
Army Sys. Software Support Command
ATTN: ASB-QAA
Fort Belvoir, VA 22060

.

I.: -I



Nancy Leveson
ICS Department
University of California
Irvine, CA 92717
(714) 548-7525 or (714) 856-5517

Dr. Timothy E. Lindquist LINDQUISZASU.CSNET@CSNET-RELAY
Computer Science Department
Arizona State University
Tempe, AZ 85287 b

(602) 965-2783

i * Steven Litvintchouk SDL@MITRE-BEDFORD
Mail Stop AI80T
MITRE Corporation
Burlington Road
Bedford, MA 01730
(617) 271-7753

r. David Luckham LUCKHAM@SAIL
Stanford University
Computer Systems Lab, ERL 456
Stanford, CA 94305
(415) 497-1242

Dr. Glenn MacEwen
Computing and Information Science
Goodwin Hall
Queens University
Kingston, Ontario
K7L 3N6
(613) 547-2915 or (613) 548-4355

* Ann Marmor-Squires MARMOR@ISI

TRW
Defense Systems Group
2751 Prosperity Avenue
Fairfax, VA 22031
(703) 876-8170

Eric Marshall PAYTON@BBNG
System Development Corporation
P.O. Box 517
Paoli, PA 19301
(215) 648-7223

• Adrian R. D. Mathias RPLATEK@ECLB
Odyssey Research Associates
408 East State Street
Ithaca, NY 14850
(607) 277-2020 8*

01



Terry Hayfield TMAYFIELD@ECLB

Institute for Defense Analyses
Computer & Software Division
1801 N. Beauregard Street
Alexandria, VA 22311
(703) 845-2479

John McHugh HCHUGH@UTEXAS-20

Research Triangle Institute
Box 12194

Research Triangle Park, NC 27709
(919) 541-7327

Rudolf W. Meijer RMEIJER@USC-ECLB

Commission of the European Communities
Info. Tech. and Telecomm. Task Force
A25 9/6A
Rue de la Loi 200
B-1049 Brussels, Belgium
PHONE: +32 2 235 7769

Donn Hilton VRDXHQ!DRM1@SEISMO

Verdix Corporation
7655 Old Springhouse Road
McLean, VA 22102
(703) 448-1980

warren Monroe WMONROE@ECLA

Hughes Aircraft Co.
P.O. Box 3310
FU-618/Q315
Fullerton, CA 92634
(714) 732-2887

Mark Moriconi MORICONI@SRI-CSL
SRI International
Computer Science Laboratory
333 Ravenswood Avenue
Menlo Park, CA 94025
(415) 859-5364

* LCDR Philip A. Myers MYERS@NRL-CSR

*: Space and Naval Warfare Sys. Command
SPAWAR 8141A
Washington, DC 20363-5001
(202) 692-8484 -

Karl Nyberg NYBERG@ECLB

Verdix Corporation
7655 Old Springhouse Road
McLean, VA 22102
(703) 448-1980

.71

n,~

! -
- .-° . e.- .e.: . .. . .- - . -e .. .. °/ e - . U



'.°1

* Myron Obaranec LAKSHMI@CECOM-1
U. S. Army, CECOM

0 Fort Monmouth, NJ 07703
ATTN: AMSEL-TCS-SIO
(201) 544-4962

Frank J. Oles
Thomas J. Watson Research Center
P.O. Box 218
88-KOI Route 134
Yorktown Heights, NY 10598
(914) 945-2012-

Mahmoud Parsian
SDI Inc.
P. 0. Box 4283
Falls Church, VA 22044

Diana B. Parton DBP@MITRE-BEDFORD
The MITRE Corporation.
Burlington Road
Bedford, MA 01730
(617) 271-7754

* Don Peters

Comm. Sec, Establishment
Dept. of Nat. Defence
101 Colonel By Drive
Ottawa KiA OK2 CANADA
(613) 998-4519

* John Peterson PETERSON@TYCHO
DoD Computer Security Center
9800 Savage Road
Ft. Meade, MD 20755

S (301) 859-6790

* Joseph E. Pfauntsch, MS 29A JEP@FORD-COS4

Ford Aerospace & Comm. Corp.
10440 State Highway 83
Colorado Springs, Colorado 80908
(303) 594-1326

* Richard Platek RPLATEK@ECLB
Odyssey Research Associates
408 East State Street
Ithaca, NY 14850
(607) 277-2020

&

="ao

• °

-S1

. . ..* A -., \ " -'""S . . . ".'- .. .". . . . . ..



Erhard Ploedereder PLOEDEREDER@TARTAN
Tartan Labs
411 Melwood Avenue
Pittsburgh, PA 15213
(412) 621-2210 U

* David Preston DPRESTON@ECLB
IITRI
5100 Forbes Blvd.
Lanham, MD 20706
(301) 459-3711

Sri Rajeev IHNP4!ATTUNIX!RAJEEV@BERKELEY
AT&T Bell Laboratories
Room 1-342
190 River Road
Summit, NJ 07901
(201) 522-6330

William D. Ricker WDR@MITRE-BEDFORD
The MITRE Corporation
M/S K229

Burlington Road
Bedford, MA 01730
(617) 271-3001

R. Max Robinson RROBINSON@USC-ECLB
Institute for Defense Analyses
Computer & Software Eng. Div.
Alexandria, VA 22311
(703) 845-2097

W. A. Robison
30 Charles Street West
Apt. # 1811 .

* Toronto, Ontario, CANADA
*. M4Y IR5

(416) 925-0751

*"Clyde G. Roby CROBY@ECLB
Institute for Defense Analyses
Computer & Software Eng. Div.
Alexandria, VA 22311
(703) 845-2541

Ken Rowe
DoD Computer Security Center
9800 Savage Road
Ft. Meade, MD 20755

4..?

"- .- .. .4.. .-. . . .. . .. . . . . . . .. .. .. . .... . . . .. . . .. . .. . . . .



John Rushby - EL393 RUSHBY@SRI-CSL
Computer Science Laboratory

.0 SRI International
333 Ravenswood Avenue
Menlo Park, CA 94025
(415) 859-5456

* Mark Saaltink SAALTINK@MIT-MULTICS
S I. P. Sharp Associates

265 Carling Avenue v
Suite 600
Ottawa, Ontario, Canada KIS 2E1
(613) 236-9942

Marvin Schaefer SCHAEFER@USC-ISI
*, DoD Computer Security Center

9800 Savage Road
For.t Meade, MD 20755-6000
(301) 859-6880 or (301) 859-6818

* ike Schwartz UCBVAX!HPLABS!HAO!DENELCOR!

Mailstop L0402
Martin-Marietta
Denver Aerospace
P. 0. Box 179
Denver, CO 80201
(303) 977-0421

Dev Sen
STC IDEC LIMITED
Technology Division
Six Hills House
London Road
Stevenage
Hertfordshire S61 lYB ENGLAND
PHONE: 011-44-438-726161

Jery Shelton VRDXHQ!JHS@SEISMO

Verdix Corporation
7655 Old Springhouse Road
McLean, VA 22102
(703) 448-1980

* Brian Siritzky (212) 460-7239 SIRITZKY@NYU-ACF2 or

Dept. of Computer Science ...CMCL2!ACF2!SIRITZKY
Courant Institue of Math. Sciences

_" New York University
251 Mercer Street
New York, NY 10012

,..

S..* ' , , " . - , " " .'. " - ." ' , " ". . . ". ". . . " . . . . . .. . . - , . - . - - ' . . ° •

-I ... , .. .. ,., . , -- ...- . . , - .---- -..



Doug Weber RPLATEK@ECLB
Odyssey Research Associates
408 East State Street
Ithaca, NY 14850
(607) 277-2020

* Steve Welke SWELKE@ECLB
Institute for Defense Analyses
Computer & Software Eng. Div.
1801 N. Beauregard Street
Alexandria, VA 22311
(703) 845-2393

Col. William Whitaker WWHITAKER@ECLB
WIS/JPMO/ADT
7726 Old Springhouse Road
Washington, DC 20330-6600
(202) 285-5065

Jim Williams JGW@MITRE-BEDFORD
MITRE Corporation
Mailstop B332
Burlington Road
Bedford, MA 01730
(617) 271-2647 "."

Jim Wolfe JWOLFE@ECLB
Institute for Defense Analyses

N Computer & Software Eng. Div. 1.-

1801 N. Beauregard Street
Alexandria, VA 22311
(703) 845-2109

Larry Yelowitz KLY@FORD-WDLI
Ford Aerospace and Comm. Corp.
Western Development Lab. Div.
Mailstop X-20
3939 Fabian Way
Palo Alto, CA 94303
(415) 852-4198

Christine Youngblut CYOUNGBLUT@ECLB
Advanced Software Methods, Inc.
17021 Sioux Lane
Gaithersburg, MD 20878
(301) 948-1989

Margie Zuk MHZ@MITRE-BEDFORD

Mailstop B321, Bldg B
MITRE Corporation
Burlington Road
Bedford, MA 01730
(617) 271-7590

.0>:



*," *JT

DISTRIBUTION LIST OF M-135

Bernard Abrams ABRAM4S@USC-ECLB
Grumman Aerospace Corporation
Mail Station 001-31T
Bethpage, NY 11714
(516) 575-9487

Omar Ahmed

Verdix Corporation
7655 Old Springhouse Road

McLean, VA 22102
(703) 448-1980

Eric R. Anderson TRWRB!TRWSPP!ERA@BERKELEY

TRW DSG (R2/1134)
One Space Park
Redondo Beach, CA 90278
(213) 535-5776

Dr. Thomas C. Antognini SECURITY!TCA@MITRE-BEDFORD or

MITRE Corporation TCVB@MITRE-BEDFORD
Mailstop B330
Burlington Road
Bedford, MA 01730
(617) 271-7294

Charles Applebaum CHA@MITRE-BEDFORD
1058 Boyurgogne
Bowling Green, OH 43402
(419) 352-0777

Krzystof Apt
Thomas J. Watson Research Center
P. 0. Box 218
88-KOI Route 134
Yorktown Heights, NY 10598
(914) 945-2923

Terry Arnold MERDAN@ISI
Merdan Group

P.O. Box 17098
San Diego, CA 92117

Ted Baker
Department of Computer Science
Florida State University

Tallahassee, FL 32306 *%

(904) 644-2296
Tallhasse, F 3236 "-

. 5



David Elliot Bell DBELL@MIT-MULTICS

Trusted Information Systems, Inc.

3060 Washington Road 
24

Glenwood, MD 21738

(301) 854-5889 i

Dan Berry
3531G Boelter Hall

Computer Science Department 
N

School of Eng. and Appl. Science

Los Angeles, CA 90024
(213) 825-2971

Edward K. Blum BLUM@ECLB

Mathematics Department

University of Southern California

Los Angelos, CA 90089

(213) 743-2504

Alton L. Brintzenhof,. SCI-ADA@USC-ISI

SYSCON Corporation

3990 Sherman Street

San Diego, CA 92110

(619) 296-0085

* Dr. Dianne Britton HELBIG@ISI

RCA Adv. Tech. Labs

ATL Building
Moorestown Corporate Center

Moorestown, NJ 08057

(609) 866-6654 or (609) 924-3253

* Dr. R. Leonard Brown BROWN@AEROSPACE
M1/112

The Aerospace Corporation

P. 0. Box 92957
Los Angeles, CA 90009

(213) 615-4335

Richard Chan RCHAN@USC-ECL (bad)

Hughes Aircraft Co.

P. O. Box 33
FU-618/P1I5
Fullerton, CA 92634

(714) 732-7659

Norman Cohen NCOHEN@ECLB

SofTech, Inc.
705 Masons Mill Business Park
1800 Byberry Road

Huntingdon Valley, PA 19006(215) 947-8880

aI

-!'



Paul M. Cohen PCOHEN@ECLB

Ada Joint Program Office %

OUSDRE/R&AT ..
Pentagon Room 3D139 (Fern Street)
Washington, DC 20301-3081

(202) 694-0211

Richard M. Cohen COHEN@UTEXAS-20

* Institute for Computing Science
2100 Main Bldg.
University of Texas
Austin, Texas 78712

(512) 471-1901

Michael D. Colgate FREEMAN@FORD-COS1
Ford Aerospace & Comm. Corp.
10440 State Highway 83
Colorado Springs, Colorado 80908

Mark R. Cornwell CORNWELL@NRL-CSS

Code 7590
Naval Research Lab
Washington, D.C. 20375
(202) 767-3365

Major Terry Courtwright COURT@MITRE

WIS/JPMO/ADT

7726 Old Springhouse Road
Washington, DC 20330-6600

(202) 285-5056

Dan Craigen CMP.CRAIGEN@UTEXAS-20

c/o I. P. Sharp Associates

265 Carling Avenue
Suite 600
Ottawa, Ontario, Canada KIS 2E1

(613) 236-9942

Steve Crocker, M-101 CROCKER@AEROSPACE
The Aerospace Corporation
P.O. Box 92957
los Angeles, CA 92957

(213) 648-6991

John J. Daly WCOXTON@USADHQ2
USAI8SAA2461 Eisenhower Avenue

Alexandria, VA 22331-0700

- A'.L



1

Tom Dee
Boeing Commercial Airplane Co.
P. 0. Box 3707
MS 77-21
Seattle, WA 98124
(206) 237-0194

Jeff Facemire FACEMIRE%TI-EG@CSNET-RELAYTexas Instruments

P.O. Box 801
M/S 8007
2501 West University
McKinney, TX 75069
(214) 952-2137

John C. Faust FAUST@RADC-MULTICS

RADC/COTC
Griffiss AFB, NY 13441
(315) 330-3241

Gerry Fisher
IBM Research 35-162
P. 0. Box 218
Yorktown Heights, NY 10598
(914) 945-1677

Roy S. Freedman FREEDMAN@ECLB
Hazeltine Corporation
Greenlawn, NY 11740
(516) 261-7000

James W. Freeman
Ford Aerospace & Comm. Corp.
Mailstop 15A
10440 State Highway 83
Colorado Springs, CO 80908
(303) 594-1536

Mark Gerhardt MSG@MITRE-BEDFORD
MITRE Corporation
Burlington Road
Bedford, MA 01730
(617) 271-7839

Chuck Gerson
Boeing Aerospace Co.
Mailstop 8H-56
P.O. Box 3999
Seattle, WA 98124

N

4,

' , -, ", " .' .- . . ., - - . . - , -. ' , . . o -, . ,, . .. . ,-\ - % - . - '- -. .' . ,. . 'm ,



".Vrdw -6.w -%- L - "1~ - . - .*.2 - 7- 7

Helen Gill
MITRE
Mailstop W459 PIP
1820 Dolly Madison Boulevard
McLean, Virginia 22102
(703) 883-7980

Kathleen A. Gilroy
Software Prod. Solutions, Inc.
P. 0. Box 361697
Melbourne, FL 32936

Virgil Gligor
Department of Electrical Engineering
University of Maryland
College Park, Maryland 20742
(301) 454-8846

Donald I. Good GOOD@UTEXAS-20
2100 Main Building
The University of Texas at Austin
Austin, TX 78712
(512) 471-1901

Ronald A. Gove GOVE@MIT-MULTICS "!
Booz, Allen & Hamilton
4330 East West Highway
Bethesda, MD 20814
(301) 951-4624

Inara Gravitis GRAVITIS@ECLB

SAIC
1710 Goodridge Drive
McLean, VA 22202 %
(703) 734-4096 or (202) 697-3749

Col. Joseph S. Greene, Jr. JGREENE@USC-ISI

DoD Computer Security Center'
9800 Savage Road
Fort Meade, MD 20755-6000
(301) 859-6818

David Gries GRIES@CORNELL
Dept. of Computer Science
Cornell University
Ithaca, NY 14853
(607) 256-4052

e, V.



*- .. . . -. . . , , * * -. W - .4. * ,. 4* S

David Guaspari RPLATEK@ECLB
Odyssey Research Associates
408 East State Street
Ithaca, NY 14850
(607) 277-2020

J. Daniel Halpern SYTEK@SRI-UNIX or

SYTEK Corp. MENLO701SYTEK!DAN@BERKELEY
1225 Charleston Road

Mountain View, CA 94043
(415) 966-7300 -

* Kurt W. Hansen KHANSEN@ECLB

Dansk Datamatik Center
LuudToftevej IC
DK2800 Lyngby
Denmark
PHONE: ++ 45 2 872622

* Scott Hansohn HANSOHN@HI-MULTICS

Honeywell Secure Comp. Tech. Center
Suite 130
2855 Anthony Lane South
St. Anthony, MN 55418
(612) 379-6434

* Larry Hatch HATCH@TYCHO
DoD Computer Security Center
9800 Savage Road
Fort Meade, MD 20755-6000
(301) 859-6790

Linn Hatch
IBM
17100 Frederick Heights
Gaithersburg, MD 20879

Brian E. Holland BRIAN@TYCHO

DoDCSC, C3
9800 Savage Road
Fort Meade, MD 20755-6000
(301) 859-6968

Ray Hookway HOOKWAY%CASE@CSNET-RELAY
Dept. of Computer Eng. & Science
Case Institute of Technology
Case Western Reserve University
Cleveland, OH 44106
(216) 368-2800

L

%UJ

r 'e F.1.."

~~L. 4 . ... ~ ~ A 20<)~AY :P '. .~*



Paul Hubbard HOOKWAY%CASE@CSNET-RELAY
Dept. of Computer Eng. & Science
Case Institute of Technology
Case Western Reserve University
Cleveland, OH 44106
(216) 368-2800

Jim Huitema
National Security Agency
R831
Ft. Meade, MD 20755
(301) 859-6921

Larry A. Johnson LJOHNSON@MIT-MULTICS .
GTE
77 "A" Street
Needham, MA 02194
(617) 449-2000 ext. 3248

Juern Juergens JJURGENS@ECLB

SofTech, Inc.
460 Totten Pond Road
Waltham, MA 02254
(617) 890-6900 ext. 316

Matt Kaufmann CMP. BARC@UTEXAS-20
Burroughs Corp. ' *.

Austin Research Center
12201 Technology Blvd.
Austin, TX 78727
(512) 258-2495

Prof. Richard A. Kemmerer DICK@UCLA-CS
Computer Science Department
University of California
Santa Barbara, CA 93106
(805) 961-4232

John C. Knight UVACS!JCK@SEISMO
Department of Computer Science .t"
Thornton Hall
University of Virginia
Charlottesville, VA 22903
(804) 924-1030

Major Al Kopp AKOPP@ECLB
Ada Joint Program Office
OUSDRE/R&AT
Pentagon Room 3D139 (Fern Street)
Washington, DC 20301-3081
(202) 694-0211



* Thomas M. Kraly
IBM Federal Systems Division
Software Eng. & Tech. 4D08
6b00 Rockledge Drive
Bethesda, MD 20817 i
( )1) 493-1449

Dr. Jack Kramer KRAMER@ECLB
Institute for Defense Analyses
Computer & Software Eng. Div.
Alexandria, VA 22311

* (703) 845-2263

Eduardo Krell

3804 Boelter Hall
UCLA
Los Angeles, CA 90024

Kathy Kucheravy
DoD Computer Security Center
9800 Savage Road
Ft. Meade, MD 20755

Dr. Kenneth Kung KKUNGQUSC-ECLA
4 Hughes Aircraft Company

Ground Systems Group
* M. S. 618/Q315

P. 0. Box 3310
Fullerton, CA 92634

(714) 732-0262

Carl Landwehr LANDWEHR@NRL-CSS

Code 7593
, Naval Research Laboratory

Washington, DC 20375-5000

(202) 767-3381

Mike Lake MLAKE@ECLB

Institute for Defense Analyses
Computer & Software Eng. Div.
1801 N. Beauregard Division
Alexandria, VA 22311

(703) 845-2519

Randall E. Leonard
Army Sys. Software Support Command
ATTN: ASB-QAA
Fort Belvoir, VA 22060

I-

a.

a.



I.

Nancy Leveson
ICS Department 4%
University of California
Irvine, CA 92717
(714) 548-7525 or (714) 856-5517

Dr. Timothy E. Lindquist LINDQUIS%ASU.CSNET@CSNET-RELAY
Computer Science Department
Arizona State University
Tempe, AZ 85287
(602) 965-2783

Steven Litvintchouk SDL@MITRE-BEDFORD ..%
Mail Stop AI80T ".

MITRE Corporation
Burlington RoadBedford, MA 01730

(617) 271-7753

David Luckham LUCKHAM@SAIL

Stanford University
Computer Systems Lab, ERL 456
Stanford, CA 94305
(415) 497-1242

Dr. Glenn MacEwen
Computing and Information Science
Goodwin Hall
Queens University
Kingston, Ontario
K7L 3N6
(613) 547-2915 or (613) 548-4355

Ann Marmor-Squires MARMOR@ISI

TRW
Defense Systems Group
2751 Prosperity Avenue
Fairfax, VA 22031
(703) 876-8170

Eric Marshall PAYTON@BBNG
System Development Corporation
P.O. Box 517
Paoli, PA 19301
(215) 648-7223

* Adrian R. D. Mathias RPLATEK@ECLB

Odyssey Research Associates
408 East State Street
Ithaca, NY 14850
(607) 277-2020

.1'



. * Terry Mayfield TMAYFIELD@ECLB

Institute for Defense Analyses
Computer & Software Division
1801 N. Beauregard Street
Alexandria, VA 22311
(703) 845-2479 t

John McHugh MCHUGH@UTEXAS-20
Research Triangle Institute

Box 12194
Research Triangle Park, NC 27709

. (919) 541-7327

Rudolf W. Meijer RMEIJER@USC-ECLB
Commission of the European Communities
Info. Tech. and Telecomm. Task Force
A25 9/6A
Rue de la Loi 200
B-1049 Brussels, Belgium
PHONE: +32 2 235 7769

* Donn Milton VRDXHQ!DRM1@SEISMO

Verdix Corporation
. 7655 Old Springhouse Road

McLean, VA 22102
- (703) 448-1980

* Warren Monroe WMONROE@ECLA

Hughes Aircraft Co.
P.O. Box 3310
FU-618/Q315
Fullerton, CA 92634
(714) 732-2887

Mark Moriconi MORICONI@SRI-CSL
SRI International
Computer Science Laboratory
333 Ravenswood Avenue
Menlo Park, CA 94025
(415) 859-5364

LCDR Philip A. Myers MYERS@NRL-CSR

Space and Naval Warfare Sys. Command
SPAWAR 8141A
Washington, DC 20363-5001
(202) 692-8484

• Karl Nyberg NYBERG@ECLB

Verdix Corporation
7655 Old Springhouse Road
McLean, VA 22102

(703) 448-1980

4'

4'I



Myron Obaranec LAKSHMI@CECOM-1I

U. S. Army, CECOM
Fort Monmouth, NJ 07703
ATTN: AMSEL-TCS-SIOU(201) 544-4962
Frank J. Oles
Thomas J. Watson Research Center
P.O. Box 218
88-KOI Route 134
Yorktown Heights, NY 10598
(914) 945-2012

Mahmoud ParsianL SDI Inc.
P. 0. Box 4283
Falls Church, VA 22044

Diana B. Parton DBP@MITRE-BEDFORD
The MITRE Corporation

Burlington Road
Bedford, MA 01730
(617) 271-7754

Don Peters

Comm. Sec. Establishment
Dept. of Nat. Defence
101 Colonel By Drive
Ottawa KIA OK2 CANADA

(613) 998-4519

John Peterson PETERSON@TYCHO
DoD Computer Security Center

9800 Savage Road
Ft. Meade, MD 20755
(301) 859-6790

* Joseph E. Pfauntsch, MS 29A JEP@FORD-COS4
Ford Aerospace & Comm. Corp.
10440 State Highway 83
Colorado Springs, Colorado 80908
(303) 594-1326

Richard Platek RPLATEK@ECLB
Odyssey Research Associates
408 East State Street
Ithaca, NY 14850
(607) 277-2020

-'4



Erhard Ploedereder PLOEDEREDER@TARTAN
Tartan Labs
411 Melwood Avenue
Pittsburgh, PA 15213
(412) 621-2210

David Preston DPRESTON@ECLB
IITRI
5100 Forbes Blvd.
Lanham, MD 20706
(301) 459-3711

Sri Rajeev IHNP4!ATTUNIX!RAJEEV@BERKELEY
AT&T Bell Laboratories
Room 1-342
190 River Road
Summit, NJ 07901
(201) 522-6330

William D. Ricker WDR@MITRE-BEDFORD

The MITRE Corporation
H/S K229
Burlington Road
Bedford, MA 01730
(617) 271-3001

* R. Max Robinson RROBINSON@USC-ECLB

Institute for Defense Analyses
Computer & Software Eng. Div. U
Alexandria, VA 22311
(703) 845-2097

V,

W. A. Robison
30 Charles Street West
Apt. # 1811
Toronto, Ontario, CANADA
M4Y IR5
(416) 925-0751

Clyde G. Roby CROBY@ECLB

Institute for Defense Analyses
Computer & Software Eng. Div.
Alexandria, VA 22311
(703) 845-2541

Ken Rowe
DoD Computer Security Center
9800 Savage Road
Ft. Meade, MD 20755

W"

'V71



11 .. 7 R 'I W. .j W - - . - - -

John Rushby - EL393 RUSHBY@SRI-CSL
Computer Science Laboratory
SRI International
333 Ravenswood Avenue
Menlo Park, CA 94025
(415) 859-5456

*Mark Saaltink SAALTINK@MIT-MULTICS
I. P. Sharp Associates
265 Carling Avenue
Suite 600
Ottawa, Ontario, Canada KiS 2E1
(613) 236-9942

* Marvin Schaefer SCHAEFER@USC-ISI
DoD Computer Security Center
9800 Savage Road

* Fort Meade, MD 20755-6000
(301) 859-6880 or (301) 859-6818

*Mike Schwartz UCBVAX! HPLABS! 1-AO! DENELCOR!
Mailstop L0402
Martin-Marietta
Denver Aerospace

* P. 0. Box 179
Denver, CO 80201
(303) 977-0421

Dev Sen
STC IDEC L1IMITED
Technology Division

* Six Hills House
London Road
Stevenage
Hertfordshire S61 lYB ENGLAND

* PHONE: 011-44-438-726161

*Jerry Shelton VRDXHQ! JHS@SEISMO
* Verdix Corporation

7655 Old Springhouse Road
McLean, VA 22102
(703) 448-1980

*Brian Siritzky (212) 460-7239 SIRITZKY@NYU-ACF2 or
Dept. of Computer Science ... CMCL2!ACF2!SIRITZKY
Courant Institue of Math. Sciences
New York University
251 lHercer Street

* New York, NY 10012

J0 .



Roger Smeaton SMEATON@NOSC-TECR

NOSC, Code 423

San Diego, CA 92152
(619) 225-2083

Michael Smith MKSMITH@UTEXAS

ICSCA
2100 Main Building
University of Texas
Austin, TX 78712
(512) 471-1901

* Ryan Stansifer RPLATEK@ECLB

Odyssey Research Associates

408 East State Street
Ithaca, NY 14850_

(607) 277-2020

* David Sutherland RPLATEK@ECLB

Odyssey Research Associates
408 East State Street
Ithaca, NY 14850

(607) 277-2020

Steve Sutkowski INCO@USC-ISID
Inco Inc.
8260 Greensboro Drive
McLean, VA 22102
(703) 883-4933 3
Michael Thompson
Astronautics Corporation of America
P. 0. Box 523
Milwaukee, Wisconsin 53201-0523
(414) 447-8200

* Friedrich von Henke VONHENKE@SRI-CSL

SRI International
Computer Science Laboratory
333 Ravenswood Avenue
Menlo Park, CA 94025

(415) 859-2560

Barry Watson WATSON@ECLB
Ada Information Clearinghouse

IITRI
Room 3D139 (1211 Fern St., C-107)
The Pentagon
Washington, DC 20301 * "
(703) 685-1477

N

.° .



II
Doug Weber RPLATEK@ECLB

Odyssey Research Associates

408 East State Street

Ithaca, NY 14850~(607) 277-2020

Steve Welke SWELKE@ECLB ".. -

Institute for Defense Analyses

Computer & Software Eng. Div.
1801 N. Beauregard Street

Alexandria, VA 22311

(703) 845-2393

Col. William Whitaker WWHITAKER@ECLB
WIS/JPMO/ADT
7726 Old Springhouse Road
Washington, DC 20330-6600

(202) 285-5065 -
* Jim Williams JGW@MITRE-BEDFORD

MITRE Corporation

Mailstop B332
Burlington Road
Bedford, MA 01730 P
(617) 271-2647

Jim Wolfe JWOLFE@ECLB
Institute for Defense Analyses

Computer & Software Eng. Div.

1801 N. Beauregard Street
Alexandria, VA 22311

(703) 845-2109

Larry Yelowitz KLY@FORD-WDLI
Ford Aerospace and Comm. Corp.

Western Development Lab. Div.
Mailstop X-20
3939 Fabian Way
Palo Alto, CA 94303

(415) 852-4198

Christine Youngblut CYOUNGBLUT@ECLB

Advanced Software Methods, Inc.

17021 Sioux Lane
Gaithersburg, MD 20878

(301) 948-1989 '3
* Margie Zuk MMZ@MITRE-BEDFORD

Mailstop B321, Bldg B

MITRE Corporation
Burlington Road k%

Bedford, MA 01730

(617) 271-7590

\a:.

-. -. w ..--- -- --. .• - -. .° . .. - . . . - . . • , . . , • -. . -. - . . .. . .. . . A.



' / Ot

440

! w

4~,.k

/,ir'' '


